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I. Introductory Remarks
A. Why study statistics?
Contrary to popular belief, it is not to drive students crazy!  The proximity of the Sidney Smith Building to the Clarke 
Institute (for Psychiatry) is only a coincidence.  Really.

Daily exposure to statistics:
Whether you realize it or not, you are bombarded with statistics every day.  Polls, average temperature for this time of 
year, crime rates, average income, traffic counts on city streets, all are statistics.  Sports (when the players aren't on 
strike) are in my humble opinion one of the largest generators of useless statistics there is.  (Governments are the 
biggest.)

Summarizing information:
Large amounts of information can be condensed into a few simple figures and/or statements using statistics.  You can't 
tell someone the high temperature of today's date for the past 30 years, but you can say "the average temperature is..."

Polls:
Polls are probably the most familiar examples of the use of statistics.  Since it is impractical to ask every Tom, Dick and 
Harriet his/her opinion on some issue, a certain number of Toms, Dicks and Harriets are chosen at random, and the 
polling company would have us believe their opinions reflect those of everyone.

Tools:
Statistical techniques are tools used to organize information and interpret observations. That's all they are!

Describe and quantify error:
Statistical analysis allows one to describe and quantify sources of uncertainty and/or error in experimental data.  With an 
idea of the uncertainty in mind, one can assess the usefulness of the data.  Obviously, a politician would like to know 
just how accurate a poll is, especially if his/her popularity is hovering around the area where s/he may not get re-elected.

Deduce and infer properties:
Statistics allow one to deduce or infer the properties of a population, based on the information we can derive from a 
sample of the population.  As mentioned above, we can't always ask everyone their opinions.

Analytic reasoning of experiment:
Statistics forces you to do some analytic reasoning of the experiment you're considering while it's being planned.  If 
there is some sort of problem with the experiment itself and how the data are collected, no amount of analysis will give 
you worthwhile results!

B. What's to be afraid of?
Statistics is an arcane art?
The majority of people view statistics as an arcane art practised by people with thick glasses and fancy calculators, who 
sit behind computers all day and have no social life.  This is not always true. (Just kidding, it's not true at all!)

Source of fear:
Of all the courses students have to take, statistics is the one dreaded the most, because people perceive it as "really 
difficult".  "Difficult" is such an unpleasant word--I prefer the term "conceptually challenging".

The math isn't hard!
The actual math involved is not terribly difficult.  The most challenging mathematical concept is the exponent.

I don't care!  I can't do math anyways!
Rubbish!  In order to catch a ball, for example, your brain must solve an initial value differential equation problem based 
only on initial speed and direction in order to place your hands in the correct location.  Furthermore, it must do so based 
on estimates of the distance of the thrower, the speed and trajectory of the ball!

Hardest part is volume:
Probably the hardest part about any stats course is the volume of material that has to be covered just to give the student 
the basic ideas.  Just remember that what you will be seeing is only the tip of the iceberg.  Instead of moaning about how 
much work there is (a valid complaint, of course), just remember that you're really getting off lightly!
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Organization is the key to success.
As with any high-volume course, it is vitally important to keep your notes organized in some way.  Bearing in mind that 
the exams are likely (but not necessarily--check with the instructor!) to be open book, or at least with a cheat sheet, 
maintaining an index where the important definitions and formulas are located can be a tremendous help!  Re-reading 
your notes from last class and keeping up in the text are also strongly recommended.

Need help?
Forming a study group with some other classmates is extremely helpful, especially for doing the pesky assignments. 
Also, don't be afraid to ask questions in your tutorial!  Asking a question means that you have the guts to ask what other 
people are also wanting to know about, not that you're a dummy!  Stats concepts aren't always easy to grasp, and if you 
don't ask, you'll draw a blank when it comes to exam time!  The TA's, overworked as they are, are here to help and will 
try their best.

A word of warning about group work on assignments:
ASSIGNMENTS MUST ULTIMATELY BE WRITTEN BY YOU ALONE!  This means that although we expect (and 
even encourage) a certain amount of collaboration when doing the questions, YOU MUST WRITE THE ANSWERS 
TO EACH QUESTION ON YOUR ASSIGNMENT IN YOUR OWN WORDS!  Copying someone's answers word for 
word is an academic offence and will result in a zero for all concerned.  Besides, just copying doesn't mean you 
understand it!  Exam questions are designed to test your understanding of the topic, and that can't be put in cheat sheets 
or open books!  (Sorry if this sounds heavy-handed, but we want to spare you and us grief later!)

Finally, there is nothing to fear.
Numbers don't bite! (Only grumpy TA's do, and they rent Dobermans to do that for them!) (OK, just kidding...)

C. Some Mathematical Symbols
The purpose of this section is to introduce you to some of the mathematical symbols used in statistics. They are nothing 
more than shorthand notation, and are used to save lots of tedious writing. They may look strange to you now, but soon 
they'll be second nature. Honest.

i) The Summation operator
The symbol that most people associate with stats more than any other is Σ, the summation operator. This is the Greek 
capital letter sigma.

Why is it used?
Mathematicians are just as lazy as the rest of us. Writing x1 + x2 + x3 + ... + xn-1 +xn is tedious, and occurs frequently in 

statistics. To reduce the tedium (to a more manageable level) they defined x x x x x xn n

n

i
i

= + + + + +−
=

∑ 1 2 3 1
1

 . 

English translation: “The sum of x sub i, for all values of i from 1 to n”.  The i=1 below the Σ and the n above it denote 
the range of the index I.  I is the most commonly used index in summations by mathematical convention.

What's this subscript thing, anyways?
In regular algebra, one normally only deals with a few variables at a time, so it is usually convenient to call them a, b, x, 
y, or whatever.  In statistics, however, most if not all the formulas used involve adding together an indefinite number of 
numbers; the formulas are indefinite because they can be used for almost any number of numbers.  In this case, it is 
much simpler to use a (captial) letter, like X or Y, to represent a variable, and to use its lower case equivalent with 
subscripted numbers or letters representing numbers attached to it to represent specific instances of the variable.

Clarify that, please!
Suppose a geographer studying traffic patterns wanted to count how many cars passed through the intersection of Bloor 
and St. George streets.  Obviously, this will depend on the traffic lights, so she decides to count cars passing through in a 
minute for several minutes and take the average.  She represents the variable “number of cars” by the letter X.  Suppose 
in the first minute 50 cars were counted.  She records 50 beside x1.  In the next minute, 43 go through, so she records 43 
beside x2.  For the following three minutes, she counts 51, 40, and 47 for the third, fourth, and fifth instances of X.  To 
get the average, she sums the values and divides by 5.

If you think about it as adding a whole column of numbers, it will help when you look at the double sum.
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A DOUBLE sum? You mean it gets worse??
A double sum is no different in concept than a regular sum!  If you look upon a single sum as the sum of a column (a 
one-dimensional entity) of numbers, it is easy to look at a double sum as the sum of a table (a two-dimensional entity) of 
numbers.  Suppose a forester is out in the bush counting trees, and each tree is also put in a category of small, medium or 
large.  He could construct a table like this: 

Tree Size
Species Small Medium Large Species Total

Spruce x11 = 4 x12 = 8 x13 = 6 x1
1

3

18j
j

=
=

∑

Larch x21 = 10 x22 = 12 x23 = 2 x2j
j

=
=

∑ 24
1

3

Poplar x31 = 18 x32 = 16 x33 = 10 x3j
j

=
=

∑ 44
1

3

Aspen x41 = 5 x42 = 4 x43 = 12 x4j
j

=
=

∑ 21
1

3

Size 
Total x i1

i

=
=

∑ 37
1

4

x i2
i

=
=

∑ 40
1

4

x i3
i

=
=

∑ 30
1

4

x ij
j=1

3

i=1

4

=∑∑ 107

As the table shows, each number fits into two categories, species and size.  In order to find out how many spruce trees 
he counted, he must sum across the spruce row, that is summing using the j subscript.  To find out how many large 
trees he counted, he must sum the “large” column, that is, summing using the i subscript.

To find out how many trees were counted, all the numbers in the table must be added up, by summing over BOTH i and 
j.  You get the same results by summing the numbers of the different tree species (summing the column sums) or by 
summing the numbers of the different sizes (summing the row sums). That's all there is to it!

All you have to remember is that the i subscript represents the row, and the j subscript represents the column that the 
number occupies in the table.

ii) The Product Operator
The product operator is another shorthand notation, this time representing multiplication of variables instead of addition. 

It is defined as x x x x x xi n n
i=1

n

= ⋅ ⋅ ⋅ ⋅ −∏ 1 2 3 1 .  It is not used very frequently in statistics. 

The rules for the summation and product operators are presented in the “Green Book (Griffith and Amrhein), pp. 11-15, 
and the “Black Book” (Burt and Barber) pp. 69-70.

iii) Factorial Operator
The factorial operator is ! (the exlamation mark).  This isn't a way to add excitement to statistics, it's just another 
shorthand notation.  n! = n(n-1)(n-2)...(3)(2)(1). This will come up later when probability, combinations and 
permutations are discussed in more detail. 

D. Statistical Populations: Definitions
This section consists of a few definitions relating to statistical populations.  Memorize these terms, as they are 
fundamental to statistics!

Population: A population is a complete set of things, such as students in this classroom, soils, stores, road accidents, 
grades, ethnic groups, or voters.  Statistics is the science and/or art of estimating information about an entire population 
based on only a small part of it, the sample (see below).
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Variables:  The properties of a population which can be measured are called variables.  Examples: height, weight, shoe 
size, soil composition, damage done in an accident, and ethnic group distribution.  The word "variable" is derived from 
the fact that the property can and will vary among each element of the population.  Variable values are usually unknown 
and must be determined empirically by estimation.

Sample:  A sample is a subset (i.e. a selection) of the members of a population.  The students in the front row are a 
sample of the students in the classroom, who in turn are a sample of the students at the University of Toronto.

Representative:  A sample is representative if it accurately reflects the population.  For instance, if the class is roughly 
half male, the front row sample should be roughly half male if the sample is to be representative.  The chief problem in 
collecting data is ensuring that it is representative.

Constant:  A constant is a quantity that does not change. (duh!)  It may be universal or set by theory, such as pi, e, G.  It 
also may be set for a specific problem, but vary for different problems, such as speed limit, interest rate, g, or distance 
between places.

Parameter:  A parameter is a constant measure which describes a characteristic of a population.  This could be the 
average height or weight of students in the classroom, the number of blue cars on Bloor Street, or the average IQ of 
people who watch Married With Children.

Statistic:  A statistic is the corresponding measure for a sample. It is an estimate of a population parameter.  Different 
symbols are used to represent parameters and statistics.

Mean Variance Standard Deviation Correlation
Parameter (population) µ σ2 σ ρ

Statistic (sample) x s2 s r

II. DATA AND MEASUREMENT
The purpose of this section is to list a lot of definitions that are commonly used in statistics, and certainly will come up 
frequently in this course.  Boring as it may be, you still should learn what all this jargon means!

A. Introduction
Statistical methods are used to derive conclusions based on empirical data.  Empirical data are measurements derived 
either from observations or  experiments.  Whenever you look at the thermometer outside, or step on the scale to see 
how much weight you've gained over Christmas, you have just recorded empirical data.

Deductive reasoning
Mathematics employs deductive reasoning, in which the conclusions follow logically from the preceding arguments and 
premises.  For example: 1) Canada is larger than France.  2) France is larger than Bulgaria.  3) Therefore Canada is 
larger than Bulgaria.

Inductive reasoning
Statistics is inductive; that is, the conclusions exceed the contents of the preceding premises.  For example, a poll of 
adults in a suburb reveals that 20% of those polled commute to work.  From this, and assuming that the poll is "reliable" 
in a statistical sense (we learn about quantifying this later!) we could infer that 20% of all the adults in the suburb 
commute.

Given more precise limits on the inference (as explained later), one can use inferential statistics, which is the focus of 
much of this course.

B. Data
Data (plural of datum) are generated by the recording of measurements.  Measurement involves either categorizing 
events (qualitative) or using numbers to give some sort of size to the event (quantitative).  The different attributes of the 
thing of interest which one selects to measure are called variables, because individual values are expected to be 
different (for example, people's shoe size).  Individual measurements of a variable are called observations (e.g. John 
Bigfoot wears a size 12).
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C. Scales of Measurement
i) Nominal Scale ("having to do with names")
Observations are put into categories based on some criterion, such as rock type, social group / occupation, housing type.

Numbers are labels only!
Any number used in a nominal scale is a category label only.  No mathematical operation can be performed on it 
because its assignment to the category is arbitrary.  For example, if you were taking part in a computer survey which 
asked what colour your hair is, you might see a list like: 1. Brown 2. Black 3. Blonde 4. Red  The numbers are for 
convenience only!

A binary or dichotomous variable can have 2 values--yes/no, male/female, dumb/dumber.

A multichotomous variable can have more than 2 values, such as ethnic background, street type, occupation.

No attempt is made to apply a scale to the categories.

ii) Ordinal ("put into order")
Observations are put into categories which can be ranked in some order.  E.g. wealthy, middle-class, poor 
neighbourhoods; wallet-buster, expensive, moderate, cheap restaurants, hardness of minerals.

No precise value can be assigned to a difference between ranks.  (When does "wealthy" become "middle-class"?)

Numbers as category names become more meaningful.  For instance, diamond has a hardness on the Moh's scale of 10, 
while quartz has a hardness of 7, which means that diamond is harder than quartz and can scratch it.

Weak Ordering: Assign items to a category & rank categories.

Strong Ordering: Rank every observation in each category.

Assignments must be mutually exclusive (no overlapping categories) and collectively exhaustive (no gaps in the 
coverage by the categories). That is, one must be able to assign all the items to the various categories such that each  
item fits into only one category.

iii) Interval Scale (Meaningful unit of distance)
Numerical category names (which can be real as well as integers) now have a meaningful unit of distance separating 
them.  We can now say that not only is A > B, but by how much, but only in terms of addition and subtraction.

Commonly cited examples are the Celsius and Fahrenheit temperature scales, IQ score, and elevation with respect to a 
local reference point.

iv) Ratio Scale  (Meaningful zero)
In this scale there is a meaningful (absolute) zero, which allows division and multiplication to be used.  The zeros in the 
Celsius and Fahrenheit scales are arbitrary, so you can't "really" say 20 C is twice as hot as 10 C.

The Kelvin temperature scale, weight, length, area, amount of milk produced, and value of crops are all ratio scales.

After all this, statistical analyses tend not to distinguish between interval and ratio scales.  However, profs and TA's who 
ask trick questions on tests and assignments do, so think carefully before answering scale-related questions!

Page 41 of Griffith and Amrhein has examples of the different scales.

D. Issues in Data Collection
These three terms often get confused.  Be sure to learn the difference!

Precision:  How exact is the measurement instrument, i.e. how close to reality does it measure, or how many significant 
figures can it produce?  The closer/more figures the better!  For example, if someone tries to pass off a yardstick as a 
metrestick, some poor yokel's metric distances are going to be shorter than they should be!

Accuracy:  Is the measurement free from a systematic bias or error?  For instance, an upset dieter might turn back the 
bathroom scale by 5 pounds, thus giving subsequent measures that are consistently off.  Note that this is not the same as 
precision!  The number of significant figures has no relation to systematic bias.
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Validity:  Is an instrument measuring what it claims to be measuring?  This becomes an issue when dealing with a 
survey or polls (yes, a survey can be considered an istrument!).  Surrogate data and indices, i.e.  data which have been 
collected are substituted in some way for data which have not, are often of questionable validity.  An example of 
surrogate data is the use of tree rings to measure past weather, or the thickness of layers of clay on lake bottoms to 
measure local erosion effects.

E. Types of Errors
Again, these terms are often confused with one another, so be careful!

Calculation error:  A goof is made in an arithmetic operation (2+2=5), or somehow numbers get miscopied in 
assignments (6435 written as 6345), etc.  Probably one of the most maddening errors!

Measurement error:  Incorrect numbers are present in the data set.  Can be from undercounting (as in traffic counts), 
incorrect coding, use of surrogate variables, etc.

Specification error:  Incorrect assumptions or formulae are used.  For example, a family defined as mother, father and 
kids, ignoring single-parent or gay families; using y=ax instead of y=ax+b.

Sampling error:  The difference between a sample and the population from which it is drawn.  This is due entirely to 
the variation between each sample.  This is the fundamental problem in statistics.  Example: a population has an average 
income of µ = $15,000, but a sample of 1000 has an average income of x = $14,750.

Random noise in the landscape:  This is a type of sampling error that results from a number of factors which act 
together to produce apparently random disturbances into the data set.  Meteorological data is especially prone to this sort 
of error.  Consider a plot of UV intensity throughout a day.  Under ideal circumstances, it should be a smooth curve, 
peaking in intensity at about 1:30 pm or so, but you very seldom get that.  Some of the dips in intensity could be caused 
by passing clouds, or perhaps some low-level UV-absorbing pollutants passed by, or maybe some yutz sat beside it and 
ate his lunch!

F. Sources of Data
These definitions are pretty straightforward.

Primary data:  Collected directly by the researcher through experiments, surveys, field work, etc.

Benefits: The researcher controls which data are measured, and will have a good idea of the sources of error 
associated with it. 

Drawback: Can be expensive.

Secondary data: Data acquired from some other source, e.g. census data.

Benefits: Can be much cheaper and reduces chance of redundancy (i.e. that someone else has already collected it).

Drawbacks:  One cannot be entirely sure of data quality; the specific variable of interest to researcher may not have 
been collected!

Tertiary data: Third-party publications of secondary data, such as an analysis of census data published in a newspaper.

Benefit: Analysis already done for you.

Drawback: You don't know how accurate the analysis is!

Direct:  From direct observation.

Indirect: From a combination of direct sources.  It's less accurate than direct sources.  Possible sources of error include 
different levels of precision in measures and errors in calculation.

G. Populations & Samples
A population, as stated before, is the set of all possible observations.  It must be defined clearly for inferential and 
sampling purposes.  Unknown properties must be assumed.

A sample is a specifically derived subset of the population.  In most cases it is too difficult/expensive/time consuming to 
examine an entire population so a portion of it is selected instead.
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A sample should be representative in that it should be drawn from a good cross-section of the population.  The 
catch-22 is that without enumerating the entire population, we can't be sure of the sample's representativeness!

Drawing random samples is probably the best way to ensure representative ones.  Sampling error associated with 
random samples is well understood theoretically, so much so that probabilities can be attached to any resulting statistics.

Most random samples also produce statistics with minimal deviation from the population attribute in question.  This 
means that the likelihood of the statistic being representative is much better than for other methods.

H. Desirable Characteristics of Sample Statistics
Unbiased:  If the arithmetic mean of the statistic calculated for all possible samples of a given size n exactly equals its 
population parameter.

Sufficient:  Summarizes all relevant information about the parent population contained in the sample, while ignoring 
any sample-specific information.

Efficient:  The more the statistic values for various samples cluster around the true parameter value, the lower the 
sampling error and the greater the efficiency.  Consider an archer shooting at a target.  The archer wants to be accurate, 
but also wants the arrows to cluster as closely to the centre of the target as possible.

Consistent:  The larger the sample size, the closer the statistic should be to its parameter value.

III. SUMMARIZATION TECHNIQUES
The quickest and most useful way to get some basic information about a data set is to display it graphically in some way. 
Probably the most familiar ways are bar charts (nominal and ordinal scales) and histograms (interval and ratio scales).

A. Ternary Diagrams
These diagrams are used to display data which has been divided into 3 (hence the name ternary) mutually exclusive, 
collectively exhaustive categories.

 A ternary diagram is an equilateral triangle, on each side of which is a proportional or percent scale corresponding to 
one of the categories.  Every point has 3 coordinates which sum to 1 (proportion) or 100 (percent).  They are used 
primarily for soil analysis.  See Griffith and Amrhein (p. 54) for more details if you really care.  You'll probably never 
see one again unless you want to study physical geography, so don't worry about this too much!

B. Frequency Distributions
A frequency distribution is the number of times a random variable takes each of its possible values.  The classic 
example is for the sum of two dice.  The random variable in this case is the result you get when you throw the dice, and 
the possible values are the integers from 2 to 12.  (The numbers 2-12 are distributed 1 2 3 4 5 6 5 4 3 2 1). Every 
random variable has a frequency distribution. The time you have to wait to get on an elevator or the subway, the 
shoe sizes of students in the class, raindrop sizes, and even the number of times Curly gets smacked by Moe in a Three 
Stooges film all have frequency distributions.

A relative frequency distribution is formed from a frequency distribution by taking the frequency of each observed 
value of the variable and dividing by the total number of observations.  It is especially useful when there are a large 
number of observations which may make the vertical scale awkward.

A cumulative frequency distribution is formed by starting with the lowest value of the observed variable and its 
associated frequency.  For each successive value of the variable, add its frequency to the total of the frequencies of all 
the previous values.

A cumulative relative frequency distribution is formed by the same process as above, except for the relative 
frequencies.

Die Roll → 2 3 4 5 6 7 8 9 10 11 12
Frequency 1 2 3 4 5 6 5 4 3 2 1
Cumulative 1 3 6 10 15 21 26 30 33 35 36
Relative .028 .056 .083 .111 .139 .167 .139 .111 .083 .056 .028
Cumul. Rel. .028 .083 .167 .278 .417 .583 .722 .833 .917 .972 1.00

10
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An example of all four types of distribution is in the table above, illustrating the results of throwing two dice and adding 
the numbers.

Creating this distribution is easy, since all you have to do is create a category for each die roll. Most of the time, 
however, one has to create categories based on ranges of values. For more detail, see below.

C. Population, Sampling, and Sample Sampling Distributions
Suppose that I extract 15 rocks from my head and I weigh and label them and put them in a bag.  Because we expect 
each rock to be different, each will have a different weight and we can construct a frequency distribution of the weights. 
We can define these rocks as a population in the statistical sense, so the frequency distribution of the weights of all 15 
rocks can be called a population (frequency) distribution.

A sampling distribution is simply the frequency distribution of the values of a statistic which is computed for all 
possible samples of size m that are drawn from a population of size n.  Note the three things which must be specified 
when referring to a sampling distribution: sample size, population size, and the statistic itself.

Suppose I now pick out samples at random of (m=)6 rocks at a time, not caring in what order I select them, from the 
population of (n=)15.  The idea is that I want to estimate the mean weight of all15 of the rocks by finding the mean of a 
sample of them.  It will be shown later that there are a total of 5005 different samples I can have, and for each I can 
compute a mean weight.  We expect each of these to be different, hence I can construct a sampling (frequency) 
distribution of these statistics!

If a frequency distribution is constructed for some (but not all) of the possible samples of size m drawn from the 
population of size n, this distribution is called a sample sampling distribution.  The name is derived from the idea that 
a set of fewer items than the total number available is a sample, any distribution made is a sample of the sampling 
distribution.  This concept is not likely to turn up before the second term, when you will learn about a procedure (called 
the Kolmogorov-Smirnov test) which allows you to check to see if a set of numbers (sample) was drawn from a given 
(sampling) distribution.

Sampling distributions related to desirable statistic qualities
Three of the four desirable statistical properties (unbiased, efficient, and consistent) can be easily illustrated using 
sampling distributions.  A statistic is unbiased if its sampling distribution is centred around the value of the parameter 
we're trying to estimate.  If you have two different sample statistics trying to estimate the same parameter, the more 
efficient of the two is the one whose sampling distribution is less broad and more peaked around the parameter value.  A 
statistic is consistent if the sampling distribution becomes more peaked (with the peak at the parameter value) as the 
sample size increases.

Consistency is a most important property!  All of the students in the GGR 270 class can be considered a population. 
Suppose I want to estimate the mean weight of the students of the class by selecting a sample and finding its mean 
weight.  Intuitively, we expect that as the sample size increases, the sample mean for any sample should tend to be 
closer to the true mean.  For this to be true, the sampling distribution for a large sample size should be more peaked 
around the parameter value.  The core concept of inferential statistics is looking at the location of a sample statistic 
within the sampling distribution and seeing how likely it is that the value would have occurred as a result of the natural 
variation of sample values.  This will be covered in more detail later.

Example of the creation of a sampling distribution
Six rocks were extracted from someone’s head and each was weighed, labeled, and put in a bag.  This forms the 
population from which I can draw samples.  Suppose I want to construct a sampling distribution of the mean weight of  
3 rocks from the population of 6.  To do this, I must enumerate all samples of size 3 which can be drawn from a 
population of size 6 (there are 20 in total) and compute the mean of each.  The frequency distribution I can create from 
these 20 numbers is the sampling distribution I want.  Below is the table I would use to create this distribution, and 
below that is the actual sampling distribution.

Example: Creation of a Sampling Distribution
Rock ID 1 2 3 4 5 6

Weight (g) 11.24 13.48 16.9 24.28 20.89 10.43 Sample Mean
Sample 1 1 1 1 0 0 0 13.87
Sample 2 1 1 0 1 0 0 17.73
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Sample 3 1 0 1 1 0 0 18.87
Sample 4 0 1 1 1 0 0 19.62
Sample 5 1 1 0 0 1 0 15.20
Sample 6 1 0 1 0 1 0 16.34
Sample 7 0 1 1 0 1 0 17.09
Sample 8 1 0 0 1 1 0 20.20
Sample 9 0 1 0 1 1 0 20.95
Sample 10 0 0 1 1 1 0 22.09
Sample 11 1 1 0 0 0 1 11.72
Sample 12 1 0 1 0 0 1 12.86
Sample 13 0 1 1 0 0 1 13.60
Sample 14 1 0 0 1 0 1 16.72
Sample 15 0 1 0 1 0 1 17.46
Sample 16 0 0 1 1 0 1 18.60
Sample 17 1 0 0 0 1 1 14.19
Sample 18 0 1 0 0 1 1 14.93
Sample 19 0 0 1 0 1 1 16.07
Sample 20 0 0 0 1 1 1 19.93

For this example, each row represents one of the possible 20 samples of 3 rocks from a population of 6.  A 1 
in the column means that the particular rock is part of the sample, and a 0 means that it is not.  For example, 
Sample 13 consists of rocks 2, 3, and 6.  The Sample Mean column is the mean of the weights of the rocks in 
the sample.  Notice how all of the numbers are different.

The Sampling Distribution
Bin >11, <=13 >13, <=15 >15, <=17 >17, <=19 >19, <=21 >21, <=23

Frequency 2 4 4 5 4 1

D. The Histogram
A histogram is a graphical method of displaying a frequency distribution.  The range of values is on the horizontal (x) 
axis, while the frequency of occurrence is on the vertical (y) axis.  Histograms are usually bar-type charts, but can be 
line graphs as well.

An ogive is a cumulative relative frequency histogram plotted as a line graph. (Know this! It's a favourite question on 
exams!)

The observations always have to be grouped in some way.  The grouping chosen will depend on the data's range.

i) Guidelines For Grouping
There should be 6-12 classes, or about 1+3.3ln N for “large” N.  (This is NOT a strict rule!  It is just a guideline!)  A 
good intial guess is N/3 or N/4.

Each class MUST be the same width, i.e. same % of range.  Uneven widths will lead to misleading displays!

Classes MUST be mutually exclusive (no overlapping classes) and collectively exhaustive (no gaps in the coverage) 
over the range.

Try to use a class width that fits a natural pattern in the data.

Watch for outliers, which can complicate things.  An outlier is a number whose value is not close to any of the others. 
For example, if you have a bunch of rainfall values clustered around 5 mm, and one day when 20 mm fell, the 20 mm 
value is an outlier.

ii) Basic Procedure for Making a Histogram
This example will demonstrate how the sampling distribution of the previous example was created. Numbers in brackets 
indicate the results for the set of means.

Compute the range of values, which is (High-Low) or (High-Low+1 for integers). (22.09-11.72=10.37)

12
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Choose the initial number of classes.  In this case, since there are 20 numbers, it makes sense to have 5 classes, since it 
divides nicely into the range. (5)

Compute the range width, which is simply the range divided by the number of classes.  (10.37/5=2.074).  Round this 
number down to 2. (2)

Choose a starting point below the minimum value of the set of numbers.  It is helpful if this starting point and the range 
width are “simple”, i.e. multiples of 2, 5, 10, etc.  In this case, 10 is a nice round number which is less than the 
minimum. (10)

Here is where the juggling begins.  First of all, the total range spanned by the number of classes and class width is 
5*2=10.  Unfortunately, the total range of the numbers is 10.37! This is what happens when you round down.  For the 
sake of simplicity, add another class interval to make the spanned range 12.  But 10+12=22, and the highest number is 
22.09. 11+12=23, and 11 and 23 enclose the range of the number set, so we settle on starting at 11 with 6 classes of 
width 2.

The lowest range of the histogram should always be less than the lowest value of the numbers.  As a result, the first class' 
boundaries should be values strictly >11.  The upper bound should be numbers <=13, since this pattern will be repeated 
for all classes to ensure they are mutually exclusive and collectively exhaustive.

The actual bounds of the classes will depend on the accuracy of the data.  For example, the class of 10-19 would have 
limits of 9.5 to 19.49 if the numbers to be grouped were accurate to one decimal, like 10.1 or 19.2.

The midpoint of each class is simply (start+end)/2, i.e. (12,14, 16, etc.).  Midpoints are required to plot line histograms, 
such as ogives, as they will be used as the x-coordinates.  Bar histograms simply have the bar's width be the width of the 
interval.

Assign the observations to the categories and create the diagram of choice. 

E. Simple Descriptive Summary Measures
Most of these you have probably seen before, but they are presented here for reference anyways.

i) Ratio: The ratio between two variables is simply (# in A)/(# in B).  A ratio gives information about whether the 
variable A is less than, equal to, or greater than the variable B, but gives no info about what the actual values are.

ii) Proportion: A proportion relates one part or category of the data to the whole.  The proportion is defined as 

x xi j
j=1

n

/ ∑ , where xi is the count in group i, while x j
j

n

=
∑

1
is the total count in all groups (the sum of the counts in all of 

the groups).  All proportions are between 0 and 1.0, and the sum of all proportions is 1.0.

For example, in the histogram example the proportion of numbers in the 7 category is 6/36 or 0.167.  Note that the 
proportion is the same as the relative frequency!

Proportions are useful when comparing 2 sets of data with different sizes and category counts.  For example, comparing 
traffic counts at certain times of day on Bloor St. (a major artery) and St. George St. (a “collector” street) to see if peak 
traffic periods for both streets coincide or not.

In order for a proportion to be truly informative, you need not just the proportion, but also how many things are in the 
whole. “Half of all dentists surveyed recommend toothpaste X.”  The question is, how many were surveyed?  Two?

iii) Percentage:  This is just the proportion*100, and is very commonly used everywhere.  As with proportions, one 
must know the whole for it to be useful.  For instance, unemployment in Toronto area (pop 3 million) of 7% vs London 
Ont. area (300,000) of 7% involve different numbers of people.  A warning: percentages and proportions can be 
deceptive for small numbers. (1 out of 4 is 25%!).  Percentages and proportions are probably best with about 50 or more 
observations.

iv) Rate of Change:  A rate of change is defined as R
x t x t

x t
=

−( ) ( )
( )

2 1

1
.  This is read as (the change in the observed 

variable) divided by (initial value of the variable).  Given the rate of change and the new count, one can compute the old 
count by some simple algebraic manipulation.
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v) Location Quotient:  This rather esoteric summary measure is an index of relative concentration in space, that is, at a 
location in a region.  It is a comparison of a region's share of a particular variable compared to its total over the map.

Example: Given a region of 1000 km2, divided into 3 regions, A=200, B=300, and C=500 km2.  Suppose that in this 
region an outbreak of the debilitating disease infectious statspanikitis is occurring.  Region A reports 150 cases, B has 
100, and C has 350, for a total of 600 students afflicted.

Intuitively, one “expects” that the number of cases of the disease will be proportional to the area of each sub-region. 
The LQ tests to see if this is indeed the case.

Area Disease Location Quotient
Sub- A 200/1000 = 0.20 150/600 = 0.250 0.250/0.20 = 1.250
Region B 300/1000 = 0.30 100/600 = 0.167 0.167/0.30 = 0.553

C 500/1000 = 0.50 350/600 = 0.584 0.584/0.50 = 1.168

In essence, the Location Quotient is the proportion of the variable divided by the proportion of the area it's in.  If the 
number of cases is in fact proportional to the area, the LQ should be 1.0.

In this example, sub-regions A and C have more cases than one would “expect”, whereas B has significantly fewer cases.

IV. SIMPLE UNIVARIATE DESCRIPTIVE STATISTICS
What we would like are ways to summarize a distribution quickly and accurately.  Graphs and plots can sometimes be a 
pain to deal with (i.e. to generate) and still do not help convey the required information in a way easily put into words.

The most common way to summarize a distribution is to state a measure of its central tendency and its dispersion, 
measures which will depend on the variable’s scale.

A. Measures of Central Tendency
i) The Mean (Interval and Ratio Scales)
Mean is not just a term used to describe Stats profs!  Also known as the average, the mean is the number which is in the 
middle of all the numbers in the distribution.  This statement makes more sense if you plot all of the numbers on a 
number line; the mean will be right in the middle. This is probably the one statistic that everyone is familiar with.

We define: 

Sample Mean: x x= ∑1
n i

i=1

n

 and the Population Mean:  µ = ∑1
N i

i=1

N

x , where N is the size of the population and n 

is the size of the sample.

The mean has 2 useful properties: ( )x xi
i=1

n

− =∑ 0  (the sum of deviations about the mean is zero), and ( )x yi
i=1

n

−∑ 2
 

is a minimum when y x= .

Note that in the above formulas, every observation is treated as equally significant.  When this is not the case, the 
weighted mean is used.  It is defined by 

x w x wwgt i i
i=1

n

i
i=1

n

= 









∑ ∑/

wi is the importance (weight) of observation xi.  Many types of data analysis attach different weights to the various 
values.  The most common weight is simply the number of occurrences.  For instance, if a survey of 100 students's house 
plants (not including their room-mates) revealed that 20 had 1, 30 had 2, 20 had 3, 16 had 4, and 14 had 5, the weighted 
mean number of plants is (20*1 + 30*2 + 20*3 + 16*4 + 14*5)/(20 + 30 + 20 + 16 +14) = 2.74.  The unweighted 
average of 1 + 2 + 3 + 4 + 5 is 3, hence the weighting by frequency reduces the mean value (in this case).

If all of the weights are equal, the weighted mean formula reduces to the usual mean formula (try it yourself to verify). 
Just remember that the sum of a constant value is just n times that value.
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The Grouped Mean is used when you are given data that have already been organized into groups. In other words, you 
have a set of (class) midpoint values and the count of occurrences (a frequency).  Computation of the mean is directly 
analogous to the weighted mean, with the frequency used as the weight. The formal definition: 

x f m f fgrp = 











=∑ ∑ ∑i i
i=1

n

i
i=1

n

i
i=1

n

,  where n/ .

The mi are the midpoint values for each group or class.  For example, consider the following frequency distribution:

Group 1-2 2-3 3-4 4-5 5-6
Midpoint 1.5 2.5 3.5 4.5 5.5
Frequency 3 4 6 5 2

The grouped mean is thus (1.5*3 + 2.5*4 + 3.5*6 +4.5*5 + 5.5*2)/20 = 3.45

ii) The Median (Ordinal scale)
The median observation is the one at which half of the observations are above it and half are below it.  One must sort the 
observations and find the one which is the middle, an often tedious process.  It can be applied to ordinal scale variables, 
as well as interval/ratio scale ones.

An interesting property is that x yi
i=1

n

−∑  (the sum of the absolute values of the differences) is a minimum when y is 

the median.

The position of the median is observation (n+1)/2 (if n is odd).  If n is even, the median will be at n/2 + 0.5 (once the 
obs are ordered).

The median can be computed for grouped data too, but it's a bit tricky.  When you construct a cumulative frequency 
chart, note where it goes above half the total observations.  The median will be in that group somewhere.  “Exactly” 
where can be found in Blalock, pp. 64-65, by linear interpolation, but it isn't crucial to the course, so don't worry about 
it!

Note that the median is not a sufficient statistic for ratio data (i.e. it doesn't use all the information available in the data). 
Consider the set of numbers -3, -1, 4, 8, 13, whose median is 4.  Suppose we replace the -3 with -13 and the 13 with 20. 
The median is still 4!  The means are different (4.2 and 3.6 respectively) because the observation values are used to 
compute it.  To compute a median, only the order of the numbers is used.

iii) Mode (Nominal Scale)
The mode is the value which occurs most frequently in a distribution.  It can be found for all types of variables. If two 
values have a tie, the data is bimodal.  There is a formula to compute the mode from grouped data, which is in the text 
and rather ugly.  One could probably cheat and just say that the mode is in the group with the highest count.

iv) Which is better?
The mean is the most justifiable measure because of its useful mathematical properties.  It uses all of the data.  However, 
it is vulnerable to extreme values (outliers) in the set. e.g. the set {5,6,3,7,4} has a mean of 5.  If the 7 were changed to 
17, the mean would become 7, which is greater than all of the remaining numbers!

The median is usually better when the distribution is skewed.  A positively skewed distribution has the tail pointing to 
the right, i.e. towards increasing x values.  A negatively skewed distribution is the opposite.  See Griffith and Amrhein, 
p. 82, or  Burt and Barber, p. ??? for examples.  It is always best to use the highest scale possible to keep the maximum 
amount of information.

Of course, there will always be some distributions in which there are no really good measures of central tendency.  IT 
NEVER HURTS to have a picture (in your mind or on paper) of what the distribution looks like!

v) Quartiles, percentiles:  A quartile is found by dividing the data range into 4.
1st quartile: location where 25% of data is below.  3rd quartile: location where 25% of data is above, or where 75% is 
below.  2nd quartile = median.
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A percentile is found by dividing the data range into 100.

B. Measures of dispersion
Measures of dispersion measure the spread of the data values in the distribution.  It should come as no surprise that there 
are several ways to measure dispersion. 

i) Range
The range is simply the highest value-lowest value.  By definition, it is affected by the extreme values in the data, and is 
thus useful only in a very general sense. 

ii) Interquartile Range
Interquartile range is defined as Q3-Q1, the difference between the first and third quartiles.  Sometimes you see the 
semi-interquartile: (Q3-Q1)/2.  It essentially is a measure of the width of the peak of the distribution, and corrects for the 
extreme values, but it is an ordinal scale only.

iii) Mean Deviation
This is really useful only in descriptive stats.  It is the average of the absolute deviations from the mean.  The absolute 
value makes it very awkward to work with mathematically because it is not a continuous function.

Definition: MD x x= −∑1
n i

i=1

n

iv) Variance and Standard Deviation
It was mentioned above that the sum of the squares of the deviations of the data from the mean produces a minimum 
value.  We use an average of these squared deviations to compute the variance and standard deviation.  As usual, 
there are two slightly different definitions of the two statistics, depending on whether you're looking at the population as 
a whole, or a sample from it.

Population Variance: ( )σ µ2 21= −∑N i
i=1

N

x Sample Variance:  ( )s x x2 21= −∑n i
i=1

n

Population Standard Deviation:  σ Sample Standard Deviation: s

The sample variance is divided by n-1 instead of n in order to make it unbiased (this can be proven mathematically, but 
I won’t go into it here).

The computational formula for variance is s x x2
2

1 1= − 













∑∑n -1 ni

2
i

i=1

n

i=1

n

The advantages of using this formula are that you only have to make one pass through the data set, rather than making 
one pass to compute the mean, then another to compute the variance, and also that roundoff error is reduced.

The formula for σ is similar, but with 1/n replacing 1/(n-1) at the beginning.

For GROUPED DATA, such as that from a frequency distribution, the formula is a bit different:

( )s n x xgrrp grp
2 21= −∑n -1 i i

i=1

ng

Here, the xi are the midpoints in the groups, ni is the number of observations in class i, and ng is the total number of 
classes.  Note that we use the grouped data mean here, and that the differences are weighted by the frequencies of the 
groups.  A similar formula for the population exists, just use N instead of n-1.

Example: Look at the sampling distribution of 3 rocks from a sample of 6 done a few classes ago.  The midpoints of 
that distribution were 12, 14, 16, 18, 20, and 22, and the respective frequencies were 2, 4, 4, 5, 4, 1. The grouped mean 
is (12*2 + 14*4 + 16*4 + 18*5 + 20*4 + 22*1)/20 = 16.8 (compare to the “true” mean of 16.902).  The grouped 
(sample) standard deviation is sqrt([2*(12-16.8)^2 + 4*(14-16.8)^2 + ... + 1*(22-16.8)^2)/(20-1)] / (20-1)) = 2.858 (as 
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opposed to the “true” sample std. dev. of 2.80).  Note how information is lost when the values are grouped, and hence 
the statistics are slightly different!

Remember that the sum of the frequencies equals n, the total number of observations.

A computational formula similar to the above can be derived (you do it!).

Just as the mean can be distorted by large outliers, the standard deviation is even more prone to distortion, since it 
depends on the square of the differences.

v) Z-Scores (Will show up later in normal distribution!)

Z
x x

si
i=

−

The Z-score of observation xi is the answer to the question “how many standard deviations away from the mean the 
observation is.”  Note that using this assumes the xi are drawn from a normal distribution (to be discussed later!).  The 
greater the number of standard deviations away from the mean the observation is, the less likely that it will have 
occurred by random chance.  For example, any Z> 1.65 or < -1.65 is only likely to occur 10% of the time if the Z's are 
random, and any Z > 1.96 or < -1.96 is likely to occur only 5% of the time if the Z's are random.  Testing to see if the 
value of a sample statistic is significant (i.e. is unlikely to happen by random chance) is the core of inferential statistics.

Z = 1.5 is about the threshold where you start to consider the observation a significant value.

vi) The Coefficient Of Variation

The CV = 
s
x

 for samples, 
σ
µ

for populations.  It is dimensionless, since the mean and the standard deviation have the 

same units.  It can be expressed as a decimal or a percentage.  It is the standard deviation expressed as a fraction of the 
mean.

What's it good for?  It's useful because it allows comparisons of the relative dispersions of two samples which may have 
widely different means, use different units, and have different sample sizes.

How to compare dispersion of # of cars on the Don Valley Parking Lot compared to # of cars on Yonge Street?  Say the 
DVP has 100,000 cars/day, s=4000; Yonge has 60,000, s=600.  CV(DVP)=0.04, CV(Yonge)=0.01. Thus Yonge Street 
has a smaller relative variation than the DVP, which would show up in the distributions as Yonge Street's peak being 
narrower than that of the DVP.

vii) Skewness
In English, skewness is the (“3rd moment of distribution”)/(the cube of s).

( )Skewness = 1
ns3 i

i=1

n

x x−∑ 3
.  Another way to compute it is 

( )
Skewness =

3 medianx
s

−

(which is usually faster!).  If zero, the distribution is symmetric; if > 0, the mean > median and the distribution is 
positively skewed (tail on right); if < 0, the distribution is negatively skewed.

viii) Kurtosis
This is not a disease statisticians get (though it sounds like one you'd like to inflict on one)!  It is (the 4th moment of the 
distribution)/(s^4).

( )Kurtosis = 1
ns4 i

i=1

n

x x−∑ 4

Kurtosis is a measure of how peaked or flat a distribution is.  The more dispersed the values (i.e. the broader the curve 
is), the greater the average x - x will be, and the greater the kurtosis.
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C. The Lorenz Curve and Gini Coefficient
i) The Lorenz Curve
This is used to compare the distributions of two different variables.  It is easy to make: just plot the cumulative 
frequency distributions of the two variables against each other on a graph (one along the X-axis, the other along the Y-
axis).

The classic (i.e. textbook) example is income distribution among a population.  In an ideal situation, income should be 
distributed equally among each population class and you'd get a straight line.  Because it's not equally distributed, a 
curve will be plotted above or below the straight line, depending on the ordering of the incomes.

Another example:

A survey was done to compare the age and average number of house plants in the homes of 45 people.  The results are 
listed below:

Ages # People CF CRF # Plants CF CRF
20-21 5 5 0.11 4 4 0.11
22-23 8 13 0.29 7 11 0.31
24-25 15 28 0.62 6 17 0.48
26-27 11 39 0.87 8 25 0.71
28-29 6 45 1.00 10 35 1.00

(Unfortunately, I don't have time to create the plot!  Sorry!)

There are 5 points to plot.  Make the People CRF the x coordinate and the Plants CRF the y coordinate.  Also be sure to 
plot the diagonal line from (0,0) to (1,1) which represents the perfect correspondence, and also Label each point 
plotted so that it can be identified!.

If the curve is above the diagonal, it means that the y-axis variable is proportionally greater than the x-axis variable, and 
if it is below the diagonal, vice versa.  Of course, the curve may be partly above the line and partly below, which 
indicates that the inequities shift back and forth.

Burt and Barber suggest that geographically referenced data be sorted by location quotient before being plotted, since 
any numbering system applied to the spatial units is arbitrary.  Data which are presented as frequency distributions but 
are not geographically referenced should be plotted in the order of the distribution categories.

The x axis is usually human related (e.g. population), when such a category is to be examined.

ii) Gini Coefficient
The Gini Coefficient is a summary measure of the deviation in the Lorenz curve.

G = 0.5 i i
i=1

n

× −∑ x y

n is the number of groups (5 in this case), xi  and yi are relative (NOT cumulative) frequencies for the x and y axis scales 
respectively.

G represents the area between the curve and the diagonal line.

For our example, G = 0.5*(|0.11-0.11| + |0.18-0.20| + |0.33-0.17| + |0.24-0.23| + |0.13-0.29|) = 0.5*(0 + 0.02 + 0.16 + 
0.01 + 0.16) = 0.175

V. CORRELATION
When data are collected, usually more than one variable is recorded for a given event.  For example, traffic counts may 
record number of cars, trucks, time of day, speed; a survey of people may look at their level of education and income; 
weather data may include temperatures, precipitation, hours of sunshine, and wind.

The researcher is usually interested in any relationships between the variables.  Does education play a role in income 
level?  Is the temperature related to how much sunshine a station gets?  Is there more traffic at a certain time than at 
another?
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The strength of the relationship is also of interest.  Statistics give us measures of both the strength and significance of 
any relationship.  The following items are various test statistics which we can compute to look for evidence of 
correlation between two variables.

 Be aware of the old cliché “Correlation does not prove causation”!

There is nothing difficult about this--determining correlations is mostly tedious calculations.

A. Phi Coefficient (Nominal Scale Data)
Purpose: To determine the strength of association between 2 nominal binary variables (variables which can only have 
2 values) 

Definition:  ( ) ( ) ( ) ( )
φ = −

+ + + +
AD BC

A B C D A C B D

 A, B, C, and D are defined as follows:

Variable 1
Category 1 Category 2 Total

Category 1 A B A+B
Variable 2 Category 2 C D C+D

Total A+C B+D N

φ ranges from -1 to 1 with zero meaning no relationship, 1 is a perfect direct relationship, -1 a perfect negative 
relationship (i.e. Category 2 only occurs when Category 1 does not).

For example:  The Smurfs are always looking for more smurfberry bushes, but they are hard to find.  However, suppose 
that the barfberry, which resembles the smurfberry, but has the undesirable side effect suggested by its name, is easier to 
find.  Papa Smurf thinks that there may be a relationship between the barfberry plant's and the smurfberry plant's 
proximity to one another, so he sends out four search parties to different parts of the forest to check.  In the table, I'll use 
the short forms S for smurfberry, B for barfberry, and + for present and - for absent.

Party 1 Party 2 Party 3 Party 4
B+ B- B+ B- B+ B- B+ B-

S+ 30 0 30 S+ 0 15 15 S+ 20 2 22 S+ 11 9 20
S- 0 6 6 S- 21 0 21 S- 6 8 14 S- 8 8 16

30 6 36 21 15 36 26 10 36 19 17 36
φ=(30*6-0*0) / 
√(30*6*30*6) = 1

φ=(0*0-21*15) / 
√(15*21*15*21) = -1

φ=(20*8-2*6) / 
√(22*14*26*10) =.52

φ=(11*8-9*8) / 
√(20*16*19*17) =.05

Party 1 reports that whenever barfberry is present, so is smurfberry.

Party 2 reports that whenever barfberry is present, smurfberry is not.

Party 3 reports that there is a pretty strong correlation between the presence of barfberry and smurfberry which is 
apparent in the numbers.

Party 4 reports that there is little correlation between the two plants.

All of the terms are of roughly equal magnitude.

So Papa Smurf has to go back to the drawing board to see if another plant is a universal indicator of smurfberry 
presence.  Meanwhile Greedy Smurf has to go to the infirmary because he gobbled a handful of the wrong berries.

NOTE:  It is important to clearly specify variable definitions!  By changing the variables around you can change the 
sign (but not the value) of the statistic.

B. Chi-Squared Statistic (Nominal Scale Data)
This statistic is an extension of the concept of the φ coefficient to polychotomous (i.e. more than two possible values) 
nominal scale variables.
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The statistic is based upon the analysis of a contingency (or cross-tabulation) table.  These are created when we have 
two nominal scale variables which have been cross-classified.

For example, suppose we wish to see if there is any relationship between the type of alcoholic beverage a person prefers 
and the political party he or she supports. The survey results are below:

Political Party

PC Liberal NDP Reform Totals
Preferred None 4 ( 6.3) 7 ( 6.4) 7( 6.2) 10 ( 9.1) 28
Beverage Beer 8 (16.4) 16 (16.8) 22 (16.1) 27 (23.7) 73

Wine 21 (10.6) 10 (10.8) 6 (10.3) 10 (15.3) 47
Spirits 12 (11.7) 13 (12.0) 9 (11.4) 18 (16.9) 52
Totals 45 46 44 65 200

Interpreting the Totals row and column: The totals row shows the numbers of people (the distribution) who support 
each political party.  The totals column shows the distribution of people who drink each type of booze. We can easily 
find the proportion of party supporters or drinkers by taking the appropriate total and dividing by the sample total 
which is in the lower right corner.

As always in correlation, we are looking for evidence of some sort of relationship between the two variables.  The way 
to do this is by comparing the frequencies in the table to expected frequencies.

We start with the assumption that there is NO relationship between the variables.  In other words, regardless of the 
actual proportion of Liberals there are in each beverage category, in the long run we can expect the same proportion of 
Liberals (which will be the proportion of Liberals in the ENTIRE sample) to be in ALL beverage categories.

To find the expected number of Liberal spirits drinkers, we take the proportion of Liberals in the sample, (46/200), 
and multiply by total number of spirits drinkers, 52, to get 12.0.  The expected number of Liberal wine drinkers is the 
proportion of Liberals in the sample, (46/200), times the total number of wine drinkers, 47, to get 10.8.  For Reform beer 
drinkers, take the proportion of Reformers in the sample, (65/200), and multiply by the total number of beer drinkers, 
73, to get 23.7.

It is a good idea to keep at least one decimal place when computing the expected numbers, to help reduce roundoff 
error.

Note that this works BOTH WAYS.  To find the number of teetotallers who are PCs, multiply the proportion of 
teetotallers in the sample (28/200) by the number of PCs in the sample, 45, to get 6.3.

See the pattern? To find the expected number for cell cij, multiply the row total ri by the column total cj, and divide by 
the total N in the sample.

We define the expected value for cell ij by e
r c
Nij
i j= .  All of the expected numbers will add up to the row and column 

totals.

The χ2 statistic itself is defined as follows:  
( )

χ 2

2

=
−

= −∑∑ ∑∑
e o

e
o
e

Nij ij

ijj=1

m

i=1

n
ij
2

ijj=1

m

i=1

n

where eij are the expected frequencies and oij are the actual observation frequencies.  The double sum simply means sum 
over the whole table.

 For this example we have ( ) ( ) ( ) ( )
χ 2

2 2 2 26 3 4
6 3

6 4 7
6 4

114 9
114

16 9 18
16 9

22 7=
−

+
−

+ +
−

+
−

=
.

.
.

.
.

.
.

.
.

So what do we do with it?  Recall that the assumption we used to compute the expected values was that the two variables 
were independent.  Large values of χ2 imply that the assumption is false, since some or all of the values are greatly 
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different from the expected values.  To find the critical value of χ2, we must look at a table for the distribution.  (Details 
will be provided next term.)

A contingency table of r rows and c columns has (r-1)(c-1) degrees of freedom  Here, it's 9.  For a 5% confidence 
interval, we reject the hypothesis of independence if χ2  > 16.9190.  Since our value is 22.77, we can say that there is 
definitely a preference for certain types of beverages among party members.  (Don't worry, you'll be seeing this sort of 
thing all too often next term!)

C. Spearman Rank Correlation
Purpose: To discover possible correlation between 2 ordinal variables.

It measures consistency, because if 2 variables are consistently related, the ranks of their observations will be linearly 
related.  E.g. larger object= higher price.

Definition:

( )r
D

s = −
−

∑
1

6

1

i
2

i=1

n

2n n

Di  is the difference in rank between the first and second variables for observation i.  The range of the statistic is from -1 
to +1.

How to do it:

Rank the observations of each variable.  Break any ties by assigning the tied observations a rank equal to the arithmetic 
mean of ranks they would have had if they were slightly different.  E.g. suppose 3 people got 76 on an exam and 76 
ranks 4th in the scores.  Instead of assigning rank 4 to all of them, assign (4+5+6)/3 = 5.  The next highest score (say 72) 
would have rank 7.  Ties tend to reduce the coefficient's accuracy.  For each event, find the square of the difference 
between the variables.  Sum these values and stuff the result into the formula.

Example: City data

Size Crime Clima Pollu Siz-Cri d2 Siz-Cli d2 Siz-Poll d2

1 1 6 3 0 25 4
2 2 5 1 0 9 1
3 3 4 6 0 1 9
4 4 3 5 0 1 1
5 5 2 2 0 9 9
6 6 1 4 0 25 4

rs=1 rs=-1 rs=1-(6*28)/210= 0.2

Note that you can use this statistic on interval and ratio scale data as well, but the results will not be as good as those 
from the Pearson correlation coefficient (see below).  This is because the Spearman statistic is not sufficient for interval 
or ratio data, since only the order and not the actual values are important!

We now move into a discussion of parametric techniques, which allow one to examine both the direction and strength of 
interval/ratio data correlations.

D. Scattergrams
Purpose: Plotting the two variables as points on a graph will give an idea of how they might be related.  This type of 
plot is called a scattergram.

Types of relations Examples
Positive [line of + slope] Slope & Erosion; Attendance & Grade
Negative [line of - slope] PC popularity and time, income & crime
No relation [blob] Temp & River drainage basin Area
Non-Linear [parabola]

21



GGR 270Y First Term Lecture Notes

E. Covariance
Purpose: To describe the joint variation or dispersion of X and Y.

Definition: (sample) ( ) ( )COV x x y y x y x yxy i i i i
i=1

n

i
i 1

n

i
i=1

n

i=1

n

n -1 n
= − − =

−
− 



















∑ ∑ ∑∑

=

1 1
1

For the population covariance, use 1/n in front.

Instead of the sum of squares of x or y, we have the product of their deviations from their respective means.  This gives 
the way they vary together.  If X and Y are positively related, then large value of X will normally be related to large 
values of Y. If X > x , then Y > y  usually.  Therefore the product of the terms will usually be positive.  In a negative 
relationship, a large value of X will normally be associated with a large negative value of Y.  Certainly, if X > x  then Y 
< y  and the product of the terms will be negative.  The sign of covariance can thus be either positive or negative.  If it 
happens to be zero, there is no linear relation between the two variables.

Its value can be anything from -∞ to +∞, which helps make comparisons between covariances difficult.  It's even worse 
when different sample sizes are involved.

F. Pearson's Correlation Coefficient
Purpose: Provides a normalized coefficient (i.e. between -1 and 1) that can provide much easier comparisons between 
different data sets.  Note that a lot of statistics are that way, and that the sometimes bizarre-looking denominators are 
there solely to normalize the statistic.

Definition:

( ) ( )

( ) ( )
r

COV
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x x y y
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Explanation:  This formula is more easily remembered as the sample covariance divided by the product of the sample 
(unbiased) standard deviations of X and Y.  The second formula is the computational version, which will reduce 
roundoff error.  The denominator is always positive.  The numerator (covariance) controls the sign.  The range of the 
correlation coefficient is from -1 to +1.  Zero again means no linear relation between X and Y.

The formula looks hideous, but it's not overly complicated and is merely tedious to compute.  This is where computers 
become so useful!

Comparing Pearson's with Spearman's for Ratio-scale data
Suppose we wish to see if there is a relationship between the average amount of snow over a river basin and the total 
precipitation it receives.  The following figures were lifted from a dataset in the Griffith and Amrhein book and are in 
inches of snow and inches of water respectively.  The following is a worktable that is typical of one used to hand-
compute Pearson's and Spearman's correlation coefficients.  Computing both will give an idea of why it is better to use 
the Pearson coefficient for ratio or interval data. As this is a sample of the rivers dataset for Ontario, the sample variance 
and covariance formulae must be used.

River Name Snow Precip S2 P2 S*P Rank(S) Rank(P) D2

Ausable 76 22 5776 484 1672 5 1 16
Big Otter 60 35.5 3600 1260.25 2130 2 6 16
Black R 92 36 8464 1296 3312 7 7 0

East Oakville 48 30 2304 900 1440 1 3 4
Humber 60 29.5 3600 870.25 1770 3 2 1

Middle Maitland 108 35 11664 1225 3780 8 5 9
Nith 80 37 6400 1369 2960 6 9 9

Nottawasaga 72 31 5184 961 2232 4 4 0
Saugeen 120 36 14400 1296 4320 9 8 1
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Sums 716 292 61392 9661.5 23616 56

Variance of Snow: (61392-(1/9)*(716)2)/(9-1) = 553.78 Standard Deviation: 23.53

Variance of Precip: (9661.5-(1/9)*2922)/(9-1) = 23.40 Standard Deviation: 4.84

Covariance of both: (23616-(1/9)*716*292)/(9-1) = 48.22

Pearson Correlation: 48.22/(23.53*4.84) = 0.424

Spearman Correlation: 1-(6*56)/(9*(81-1)) = 0.533

Note how the Spearman coefficient implies a better correlation than the Pearson coefficient.  Remember that the 
Spearman is not a sufficient statistic for ratio/interval data because it doesn't use the data values, only their order.  This 
introduces inaccuracy.  Also note that you should keep more significant figures than what I wrote down for your 
intermediate steps, to reduce roundoff error.

G. Interpreting Results
It is important to stress again that just because two variables have a high correlation, it is not necessarily true that “X 
causes Y”.  Other, perhaps less important variables, may also be contributing.

Example: square feet of office space and number of trips to the building (lobby traffic).  Secondary variables of 
importance are, among others, the type of business(es) in the building, how many of them there are, and their location in 
the office building.  X and Y could mutually interact, as opposed to cause and effect.  For example, low income, lack of 
education, unemployment, poor housing, and criminal activity are all interactive (exception: politicians...)  The 
relationship may be spurious, caused by an unobserved third factor which controls both X and Y. Example: Cancer and 
number of groundhogs nearby.

A zero correlation does not necessarily mean there is no relationship between X and Y. It means there is no linear 
relationship!  Unless we look at the scattergram, for all we know the points could lie on a parabola!  This is why it is 
always a good idea to have a scattergram available to help with the interpretation.

VI. SIMPLE LINEAR REGRESSION
Purpose:  to establish a precise mathematical relationship between the two variables X and Y, instead of just finding 
how well related they are.  Once we have the relationship, we can use it for prediction and forecasting.

The simplest possible relation between two variables is a linear one, in the form Y=aX+b.  Y is the dependent variable 
and X the independent variable.  The form of the equation shows that Y depends on X.

a is the slope of the line.  If a > 0 , Y increases with increasing X; if a < 0, Y decreases with increasing X. It represents 
how fast Y changes with a change in X. b is the Y-intercept, the value of Y that occurs when X=0.

Of course, when we plot our data, we don't expect that they will all fall nicely on a straight line.  We've all been faced 
with a bunch of points on a graph, and the burning question “What is the best line that I can draw to match the data?”

This line should obviously be drawn in such a way as to minimize the deviations between the line and the true data 
points.  This line, the regression line, can then be used to estimate the data points.  The equation for the regression line 
is simply, where y i  is the estimated value of the yi  which corresponds to the xi.

a and b of the regression line are the regression coefficients.  To find their formulae, we want to minimize the sum of the 
squares of the vertical distances between the points and the regression line; this is called the ordinary least squares 
approach.  It is a simple calculus procedure, and the results are as follows:
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Note that a regression line is guaranteed to pass through the point ( , )x y .  Note also that the formula for the slope can 
be easily remembered as the covariance of X and Y divided by the variance of X.

Consider the example in which the Pearson and Spearman coefficients were compared.  We can easily compute a = 
48.22/553.78 = 0.0871 and b = (292-0.0871*716)/9 = 25.52.

The goodness of fit parameter is called the coefficient of determination. It is a measure of how much of the total 
variation of Y about its mean is  “explained “ by the regression.  See diagram in Black Book, page 442 or Green Book, 
page 325, to visualize what will be discussed next.  Recall the formula used for computing the variance, which can be 
translated as the average of the sum of squares of deviations of the values from the mean.  This total sum of squares, 

( )SST y y= −∑ i
i=1

n
2

,is also a representation of the total variability within the variable Y.  With a bit of messy 

algebra, we can break up this term into two others, the variability  “explained “ by the regression line, a.k.a. sum of  

squares of regression, ( )SSR y y= −∑  i
i=1

n
2

and the residual variability or sum of squares of errors, 

( )SSE y y= −∑ i i
i=1

n


2

, such that SST=SSE+SSR.

We define r SSR
SST

2 = , but normally use r SST SSE
SST

2 = −
 since SSE and SST are more intuitive. r2  has a range 

between 0 and 1.  The closer it is to 1, the better the fit, since SSR increases with the better fit.  As it turns out, r2  is just 
the Pearson correlation coefficient squared.  It has a range between 0 and 1 as you might expect.  The closer r2  is to 1, 
the better the fit.

Another relationship worth noting is r
as
s

= x

y
.  It follows from the original definitions of r2 and the slope parameter.  

The residue (or residual) is the difference between the observed value and the value predicted by the regression line.

VII. SPATIAL STATISTICS
Geographical data are naturally spaced over an area of land.  For example, a city can be divided into wards, census 
tracts, and political ridings.  Often geographers are interested in computing various summary statistics which will take 
the geographical distribution of the data into account.  If four tracts are arranged in a square pattern and the numbers 
(7,8,4,5) are assigned one per tract, there are 12 possible arrangements for the numbers (see Griffith and Amrhein, page 
114).  No matter how you arrange them, the mean is 6.  This shows that the regular mean is insufficient to summarize 
spatial data.

Spatial statistics fall into three categories: geostatistics, point pattern analysis, and spatial autocorrelation.  A lot more 
has been done within all of these categories, but fortunately we only have to cover the basics in each.

The following example is the distribution of Smurf foraging parties in the forest some time one afternoon.  The X and Y 
coordinates mark the locations and the numbers represent the number of Smurfs in each party.
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Point X Y Smurfs NN Dist
A 1.65 2.70 8 B 0.413 Spatial Mean is (2.71, 2.01)
B 1.60 2.29 24 A 0.413 Standard Distance is 2.38
C 1.58 4.25 16 A 1.551 Nearest N. Statistic: 1.14
D 3.79 0.85 12 K 0.815
E 0.91 0.24 14 J 0.935
F 4.61 1.09 19 K 0.400
G 3.66 2.48 24 L 0.84
H 2.75 2.58 6 G 0.915
I 3.05 1.67 6 M 0.620
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J 1.30 1.09 21 E 0.935
K 4.59 0.69 2 F 0.400
L 3.66 3.32 11 G 0.84
M 2.89 1.07 17 O 0.330
N 4.06 4.52 15 L 1.264
O 2.56 1.06 20 M 0.330

A. Geostatistics
One has to be careful in the definitions of the areas used in all spatial statistics, because they are often (especially the 
point pattern analysis measures) very sensitive to the areal pattern.

i) Spatial Mean
Purpose:  This statistic locates the “centre of mass” of the data.  If you consider the area of study as being a thin plate 
(of zero mass), and the value of each data point as being a point mass on the plate, the spatial mean is the location you’d 
have to put your finger under to have the plate balance on it.  It is two components, x and y, and not just one number 
like the mean!

Each coordinate of the spatial mean is computed separately, using the grouped data mean formulae:
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n; .  Here, the fi  are the data values at the coordinates (xi, yi).

If the spatial mean of the data is significantly different from the geographic centre of the region, this indicates a non-
uniform distribution.  (Think about it!)

If the individual x and y coordinates of the data points are not known, the spatial mean can be estimated, at the cost of 
introducing measurement error, by the following procedure:

1. Impose a rectangular grid on the area.  The grid spacing must be uniform on the x and y axis, but need not be 
the same for both.

2. Assign values (odd integers, beginning with 1) to the midpoints of the spaces on both axes.  We do this so that 
zero doesn’t come in to complicate things.  These values are the xi ‘s and yi’s used in the above summation 
formula.

3. Sum the frequencies (i.e. data point values) in each column along the x axis and row along the y axis.  These 
values are the fi ‘s used in the above summation formula.

ii) Standard Distance
This is the two-dimensional equivalent of the standard deviation, and is a common measure of dispersion in 
geostatistics.  Note that a large value of standard distance means that the points are relatively scattered, while a small 
value means they are relatively clustered.
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Note that as with the spatial mean, fi is the value of the data point.  x  and y  spatial mean coordinates.

This definition is in terms of sample variances, but it usually doesn’t matter if we use the population variance since the 
frequencies often add up to large values.
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NOTE: The given formulas for spatial mean and standard distance are weighted by the data values.  For the unweighted 
versions, just replace the denominators with n and all the fi values with 1.

iii) Areal Frequency Distribution
This is nothing more than a 3-D map of the geographical distribution being studied.  See Griffith and Amrhein p. 126 for 
an example.

B. Point Pattern Analysis
In point pattern analysis, as the name suggests, attention is restricted to the locational information of the data points, 
ignoring their values.  Descriptive statistics have been created to describe the geographic distribution of data according 
to their spacing (the nearest neighbour statistic) and their density (quadrat analysis)

i) Nearest Neighbour Statistic
This statistic gives an idea of, on average, how far a point is from its nearest neighbour in the area of study.  First we 
find the distance from each point to its nearest neighbour.  Given the x and y coordinates of the points, we can compute 

the Euclidean distance, defined as ( ) ( )d x x y y= − + −2 1
2

2 1
2 .  Obviously you don’t have to compare a point to 

ALL of the others on the map!  Only the ones that look like potential nearest neighbours.  Note that just because A is the 
nearest neighbour to B does not mean that B will always be the nearest neighbour to A.  A point may be the nearest 
neighbour to several points, or to no points at all.

Having found this average distance, we then compare it to the average point density you’d expect if there was a totally 

random distribution over the whole area (found by theory to be 
1

2 n area/
).  If we divide the average distance by the 

expected distance, we get R d n area= 2 / , where R is the symbol used for the nearest neighbour statistic.

Interpretation:

The more closely the points are clustered together, the closer to 0 R will be, since the average nearest neighbour distance 
decreases.  The closer R gets to 1, the more randomly spaced the points are.  This follows from the definition of R.  The 
value of R approaches 2.149 for perfectly uniformly spaced points.  (Don’t ask me how this was found!)  Hence, the 
closer R is to 2.149, the more uniformly spaced the data are.

Drawbacks:

Dependence on area.  If you take a given distribution of points and plunk it into a larger area, R will decrease until, for a 
sufficiently large area, R goes to zero.  Conversely, if you manage to decrease the area by cutting lobes or chunks out 
from between the points, you can increase R.  Therefore, the definition of the area is very important!

It works fine for homogeneous point patterns, in which the points are all relatively dispersed.  Interpretation becomes 
more difficult for heterogeneous patterns (Griffith and Amrhein, p. 131; Burt and Barber, p. 213), in which there are 
distributions of clustered points.

The nearest-neighbour statistic for the Smurf foraging parties is 1.14, indicating that the distribution is pretty close to 
random (as it should be, since the numbers were all randomly generated!)

ii) Quadrat Analysis
This allows one to generate a statistic which describes the density of the point distribution, or the variability in the 
number of points per cell.

Superimpose a square grid over the area of study.  The best (area) size for a square is apparently twice the expected 
frequency of points in a random distribution (i.e. 2*area/n), so the length of a side is the square root of that.  Construct a 
frequency distribution of the number of points per cell.  That is, record how many cells there are with no points in them, 
1 point, 2 points, and so on.

Using the formulas for grouped mean and grouped standard deviation, compute the variance to mean ratio (VTMR). 
Note the difference from Griffith and Amrhein which incorrectly uses the coefficient of variation!  (Because for 
the Poisson distribution, mean = variance = λ
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Interpretation: If the points are well dispersed, the cell frequencies will be similar, making the variance small and 
hence the VTMR close to zero.  If the points are in clusters, with most cells containing no points and only a few with 
points, the variance will be large relative to the mean frequency, so the VTMR will be large.  If the points are perfectly 
randomly dispersed, the VTMR will be 1.  This is because the Poisson distribution describes the frequency of values for 
a randomly generated spatial pattern, and its variance is equal to its mean. (We will discuss this later!)

Problems:  Both the size of the quadrats and the exact positioning of the quadrat grid will affect the value of the VTMR. 
Studies have shown that if the grid size is decreased (and hence the number of quadrats is increased), the variance 
decreases faster than the mean, meaning that the VTMR tends to decrease with decreasing quadrat size. It is not a 
consistent statistic.

The areas being analyzed are seldom perfectly regular, and it is almost inevitable that quadrat squares will overlap the 
area’s boundary.  How to deal with boundary squares can be a headache unto itself, and sometimes can affect the result.

C. Spatial Autocorrelation
This may be defined as the relationship among values of a single variable that comes from the geographic arrangement 
of the areas in which these values occur.  Classical statistics assumes no such relationship (i.e. assumes all values are 
independent).  These statistics are a real pain to compute, as you will soon find out!

i) Binary Connectivity Table or Matrix
This is a table which summarizes the connections between each region, i.e. which region borders which.

Label each region on the map.  Create a table, whose row and column labels are A, B, C, etc.  For each cell in the table, 
fill in a 1 if the regions in the row and column labels have a boundary, and 0 if they don’t.  Fill in 0 on the diagonal, 
since A doesn’t have a boundary with A, etc.  The more 1’s in the table, the more highly connected the regions.  Note 
that the table will always be square.  As a matrix, it is denoted by C, with elements cij.  The cell in row i is connected to 
the cell in column j if cij=1, and isn’t if cij=0.

ii) Join Count Statistic
This is used when data is on a binary (nominal) scale (or can be degraded to one).

We can regard the connectivity table as an enumeration of all possible pairs of areas.  However, since we have 
duplication, with A being next to B, and B being next to A, when we add up all the 1’s in the table we then divide the 

number by 2 to find the total number of connections.  In other words, J c= ∑∑0 5. * ij
j=1

n

i=1

n

.

With our binary variable, we can say that an area either has or doesn’t have the variable.  At the risk of being politically 
incorrect, the usual jargon is to label areas “with” something as “white” and those without as “black”.  We record the 
number of “white” areas as n1 and “black” areas with n2.

We can now look at the map and see how many boundaries there are between two “white” areas (WW), how many there 
are between two “black” areas (BB), and how many there are between a “white” and a “black” area (BW). The sum 
WW+BB+WB=J since this is just a way of dividing up the boundaries.  The expected values of the three variables are as 
follows:

( )
( )E WW

Jn n
n n

( ) =
−

−
1 1 1

1
 , 

( )
( )E BB

Jn n
n n

( ) =
−

−
2 2 1

1
 , E BW

Jn n
n n

( )
( )

=
−

2
1

1 2

These are the values we would expect WW, BB, and BW to have if the distribution of the white and black areas was 
truly random.  If the actual values are close to the expected values, the distribution is random.  Note that the sum of the 
expected values also equals J.

If the sum of BB+WW is high compared to BW, the distribution is clustered, otherwise it is dispersed.

iii) Moran Coefficient
This statistic is used when the data are interval or ratio scale.  It is written in terms of the type of cross-products found 
in the classical correlation coefficient formula, but instead of two variables X and Y, we use the pairs of adjoining  
areas.
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The Moran Coefficient MC is defined as follows:  
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The first term is merely the ratio of the number of data point areas to the the total number of connections between the 
areas.  The cij are the values from the binary connectivity matrix.  The sum of all cij means, as before, to just add up all 
the 1’s in the binary connectivity matrix.  n is the number of observations (i.e. areas).  Since the connectivity table is 
square by definition, it has n rows and columns, so the sums over i and j are from 1 to n.

The denominator of the second term is the variance of the data.  The numerator of the second term is the cross-product 
of the deviations of the j’th and the i’th observations.  Note that the double sum implies that you need to sum over all 
possible combinations of xi and xj, but the cij term, which is zero for non-connected pairs of regions, means that the sum 
is really over all possible pairs of connected regions.

Interpretation:  Values tend to be between -1 and +1, though are not restricted to this range.  Values near +1 indicate 
similar values tend to cluster (positive spatial autocorrelation); values near -1 indicate dissimilar values tend to cluster 
(negative spatial autocorrelation); values near -1/(n-1) (which goes to 0 as n gets large) indicate values tend to be 
randomly scattered.

iv) Geary Ratio

This is written in terms of paired differences: 
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The values of GR tend to be between 0 and 2, but are not restricted to this range.  Values approaching 0 indicate similar 
terms tend to cluster (xi-xj tends to be small); values near 2 indicate dissimilar values tend to cluster; values near the 
expected value of 1 indicate random patterns.

v) Example of Moran Coefficient & Geary Ratio
Schematic of area is below.

                           A---B--|
                           |   |--D
                           |   |  |
                           |---C--E

Table 1: Values Table 2: Binary Connectivity Table
Area xi ( )x xi − ( )x xi − 2 A B C D E

A 20 6 36 A 0 1 1 0 0

B 16 2 4 B 1 0 1 1 0

C 15 1 1 C 1 1 0 1 1

D 10 -4 16 D 0 1 1 0 1

E 9 -5 25 E 0 0 1 1 0

Table 3: Values for ( ) ( )c x x x xij i j− −∑  for computing the Moran Coefficient
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( )x xj −
14 = x ( )x xi − 6 2 1 -4 -5

 5 = n 6 0 12 6 0 0
14 = cij∑ 2 12 0 2 -8 0

82 = ( )x xi −∑ 2 1 6 2 0 -4 -5

46 = ( ) ( )c x x x xij i j− −∑ -4 0 -8 -4 0 20

0.200 = Moran Coeff -5 0 0 -5 20 0

Table 4: Values for ( )c x xij i j−∑ 2
for computing the Geary Ratio

xj

 14 = x xi 20 16 15 10 9
  5 = n 20 0 16 25 0 0
 14 = cij∑ 16 16 0 1 36 0

 82 = ( )x xi −∑ 2 15 25 1 0 25 36

280 = ( )c x xij i j−∑ 2 10 0 36 25 0 1

0.488 = Geary Ratio 9 0 0 36 1 0

How to Compute the Moran Coefficient and Geary Ratio
1. Construct Table 1, containing the area data and values derived from the differences between the data and the mean. 

Compute the sum of column 3.

2. Construct Table 2, the binary connectivity table.

3. Construct Table 3.  To do this, take the <img src=“images/eqn7_13.gif”> values from column 2 of Table 1 and put 
them in the row and column labels of the table.  Next, put zeros in the table corresponding to the zeros of Table 2. 
For the remaining entries, multiply the numbers in the appropriate row (i) and column (j).

4. Construct Table 4.  To do this, take the x values from column 1 of Table 1 and put them into the row and column 
labels of the table.  Next, put zeros in the table corresponding to the zeros of Table 2.  For the remaining entries, 
find the square of the differences between the numbers in the appropriate row (xi) and column (xj).

5. Compute the Moran Coefficient, using the sum of all the values in Table 3 for the ( ) ( )c x x x xij i j− −∑  term.

6. Compute the Geary Ratio, using the sum of all the values in Table 4 for the ( )c x xij i j−∑ 2
term.

VIII. PROBABILITY
Probability refers to the likelihood or chance that an event will occur.

An event is almost any observable phenomenon that can have at least 2 outcomes, such as the toss of a coin, a poker 
hand, test grade, flood.

P(theoretical outcome) is defined as the number of times the desired outcome can occur divided by the total number of 
events.  This is used when we can use some theoretical way to compute all possible outcomes of an event. 

P(empirical outcome) is defined as the number of times the outcome has occurred divided by the number of times the 
event has occurred.  This is used for events which can only be recorded by observation, such as floods, droughts, fires, 
etc.

P can be stated as a ratio (12/100), a proportion (0.12) or a percent (12%).
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The “law of large numbers” assumes that as the number of observations increases, the ratio P approaches some absolute 
or “a priori” probability.  Thus a good estimate of an empirical probability requires a large number of observations. 
This naturally poses difficulties with natural hazards.

The key to probability statements is uncertainty.  We cannot state for certain the outcome of any single or specific event, 
but we can state the likelihood an outcome will be observed.

A. Counting Tools
There are 4 different short-cuts we can use to count the number of outcomes of an event.

A meaning for the factorial:  How many ways can we arrange a group of 4 students?  In the first position, we can put 
any one of the 4.  In the second position, we can put any one of the 3 remaining.  In the third position, we can put any of 
the 2 remaining.  In the last position we can only put the 1 remaining student.  The total number of possible 
arrangements is 4*3*2*1, which we define as 4! and equals 24.  You must multiply the combinations!

i) The Multiplicative Rule
Example: If I have 3 bags of rocks, with bag 1 having 6, bag 2 having 4, and bag 3 having 8, and I want to select 1 rock 
from each bag, there are 6*4*8=192 ways I can do this.  This is so because the selection from each bag is made 
independently of the others.  If I select rock 1 from bag 1 and rock 1 from bag 2, I can then select any of the 8 rocks 
from the third bag.  Then if I select R1 from B1 and R2 from B2, I can still select any of the 8 rocks from B3.  If you 
work it out, for each of the 4 rocks in B2, I can select the 8 rocks in B3, giving 4*8=32 combinations.  These 32 
combinations can be repeated for each of the 6 rocks in B1, giving 6*32=192.

In general, if you have k sets of elements, with n1 in the first set, n2 in the second, and nk in the k’th, and you want to 
select one from each set, there are a total of n1*n2*...*nk possible samples to draw.

ii) The Permutations Rule
Example: How many ways can Papa Smurf select a group of 5 Smurfs to go foraging for “magic” mushrooms?  If there 
are 200 other Smurfs in the village (the TV show was lying about there only being 100), the first position can be filled 
by any one of the 200.  The second position can be filled by any one of the 199 remaining.  And so on.  The fifth 
position can be filled by any of the remaining 196 Smurfs.  The total number of permutations for selecting 5 Smurfs is 
thus 200*199*198*197*196 = 3.04e+11.

In general, if you have one group of size N, and you wish to select r elements without replacement (i.e. all are selected 
at once) where the order of selection is important from that group and arrange them into r positions, there are a total of 
(N)(N-1)(N-2)...(N-r+1) ways to do this.  This can be written in a more compact form using factorial notation, as 

follows:  ( )P N r N
N r

( , ) !
!

=
−   Remember that N! = N(N-1)(N-2)...(3)(2)(1), so when you cancel out the common 

terms from the numerator and denominator, you get the original formula.

iii) The Partitioning Rule
Example:  Suppose Papa Smurf has 2 chores he has to get done, one of which requires 2 Smurfs and the other of which 
requires 3 Smurfs.  As it happens, 5 Smurfs are loafing in the village square shooting the breeze and don’t see him 
coming until it is too late to hide.  How many ways can Papa assign the two chores to the 5 Smurfs?

If we initially treat the 5 available positions as separate, (i.e. abcde) there are 5*4*3*2*1=120 ways to assign the Smurfs 
to the jobs.  However, 3 of the jobs are identical, and the other 2 are also identical, so we are effectively reducing the 
number of unique arrangements to aaabb.  The first 3 elements can be arranged in 3! ways, and the last 2 in 2! ways, so 
in effect we are losing 3!*2! permutations.  To find how many remain, we divide 5! by (3!*2!) to get 10.

In general, if we have a set of N elements that is partitioned into k subsets, each with nk elements, there are 
N

n n n
!

! ! !1 2  k
 distinct ways to do this.

iv) The Combinations Rule
This is a special case of the partitioning rule, in which the set of N elements is divided into 2 groups.  We normally look 
at it from the perspective of taking a sample of size r without replacement from the population of size N, in which the 
order of the sample elements is not important.  This means that there are N-r elements which are not sampled.  Thus 
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by the partitioning rule, ( )C N r
N
r

N
r N r

( , ) !
! !

=








−
.  This is read as “N choose r”, a short form for “how many ways 

can we choose r elements from a population of N” (without replacement and order not important).  For example, how 
many different combinations of 6 numbers can be chosen from 49 (as in the Lotto 6/49)?  C(49,6) = 49!/(43!6!) = 
13,983,816.  Another example which combines the combination and multiplication rules follows from this one:  how 
many ways can you select 4 of the 6 correct numbers from the Lotto 6/49?  There are C(6,4) ways to choose 4 of the 6 
correct numbers, and C(43,2) ways to choose 2 wrong numbers from the remaining 43.  They must be multiplied for the 
total number of possibilities:  6!/(2! 4!) * 43!/(2! 41!) = 15*903 = 13545.  Go through all combinations, from 6 right to 0 
right, and you’ll find out that there’s only a 2% chance of winning any money (i.e. getting 3 or more numbers right)!  If 
any person tried something like this, it would be called a numbers racket and the person would be arrested.  But it’s the 
government, so it’s called a lottery!

v) Sampling with Replacement
The above 4 rules assume that the sampling of the population is done without replacement.  That is, when a sample is 
taken from the population, the items are taken one at a time, but are not replaced in the population after selection.  Thus 
an element can only be selected once.  With replacement, an element can be selected more than once.  Suppose we have 
a population of size 4, and we want to enumerate all possible samples of size 2 that we can get by drawing an element, 
recording it, and then putting it back.  In this case, order is important, since we are looking at an arrangement.  For the 
first selection, we can draw any one of the 4 elements.  But since we put the element back, for the second choice we can 
also draw any of the 4 elements.  This gives us a possible 42=16 samples.  For samples of size 3, there would be 43=64 
possible samples.

In general, the number of possible arrangements (order important) of size r that can be drawn from a population of size 
N with replacement is Nr.

When we talk about combinations, i.e. order is unimportant, things get much trickier, because we have to look at the 
composition of each possible sample.  For instance, a sample of size 5 taken with replacement could be of the form 
aaaaa, aaaab, aaabb, aaabc, aabbc, aabcd, or abcde.  Since the order is not important, we sort any arrangement into one 
of these patterns!  There is no easy rule for counting these things up.  Because the probability of each sample 
composition (i.e. aabbc, aaabb) may very well be different, and because of the complexity, this is not frequently used! 
So don’t worry, nobody’s going to ask you to compute one!

B. Introduction to Set Theory
The use of sets and set theory is another way of looking at probability problems, especially when we’re looking at 
probabilities related to combinations of two or more events.  For the most part, set theory appears more difficult than it 
really is because it is shrouded in a smokescreen of strange symbols and jargon.  All you have to do is remember that a 
set is a collection of objects.  In this case, the objects are samples of size n drawn from a population.

i) Terminology
Set theory problems can be graphically represented by the use of a Venn diagram.  It consists of a rectangle, 
representing the sample space (the set of all possible samples of size n), and one or more inscribed circles, representing 
various groups of selected samples or elements (sets).

Consider two overlapping circles, one labelled A, the other B.  The union of two sets consists of the area (representing 
elements or samples) enclosed by both.  It is denoted A∪B.  If a sample is contained in A∪B it is in either A or B.  The 
word or is used to denote a union.  The area in which the two circles overlap is called the intersection of the two sets.  It 
is denoted by A∩B.  If a sample is contained in A∩B, it is in both A and B.  The word and is used to denote an 
intersection.  If the two circles do not intersect at all, they are mutually exclusive or disjoint.  The “intersection” is the 
empty set, denoted by ∅.  The part of the sample space outside a given circle, say A, is the complement of A, denoted 
by A’.  If A is a subset of B, all of the elements of set A are contained within set B.  It is denoted by A ⊂ B.

ii) Example: Throwing 2 Dice
Throwing two 4-sided dice is equivalent of taking a sample of size 2 from a population of size 4, consisting of the 
integers 1 to 4, with replacement (since you can throw doubles), and the order important (if we have 2 distinct dice, i.e. 
red and white).

Define 4 sets:
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A (all samples whose sum is 7): {(3,4) (4,3)};

B (all samples with a 2): {(1,2) (2,1) (2,2) (2,3) (2,4) (3,2) (4,2)};

C (all samples whose sum is 4 or less): {(1,1) (1,2) (1,3) (2,1) (2,2) (3,1)};

D (all samples with a 4 in them): {(1,4) (2,4) (3,4) (4,1) (4,2) (4,3) (4,4)}

Note that (3,3) is left out of these 4 sets.  The Venn Diagram is displayed below.  You can see from the diagram that A 
⊂ D, B ∩ D={(2,4)(4,2)},  B ∩ C={(1,2), (2,1), (2,2)},  C ∩ D=∅.

(1,4)

(2,1)

(2,2)

(3,3)

(3,1)

(1,3)

(1,1)(3,2)

(2,3)

(1,2)

(4,2)

(2,4)
(4,4)

(4,1)

C
B

D

A(4,3)

(3,4)

Venn diagram for example
iii) Application to Probability
Since probability refers to relative frequencies, we can read off the probability of getting a certain sample.  For instance, 
since 7 of the 16 samples have the number 4 (set D) in them, P(D)=7/16=0.44.  P(C) and P(B) also are 7/16.  Since 3 
samples are in C and B, P(B ∩ C)= 3/16=0.19.  P(A’)=14/16=0.88.  And so on.

iv) Mathematical Set Rules
The Venn diagram can also be used to illustrate mathematical rules of sets.  ⊂  ∩ ∪

1) Commutative Rule:  A ∩ B = B ∩ A;  A ∪ B = B ∪ A.

2) Associative Rule:  A ∪ (B ∪ C) = (A ∪ B) ∪ C;  A ∩ (B ∩ C) = (A ∩ B) ∩ C.

3) Distributive Rule:  A ∩ (B C) = (A ∩ B)  (A ∩ C);  A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

(Sorry, no pictures available)

v) Probability Rules using Sets
Set theory can take a lot of the pain out of computing compound probabilities.  Inspection of simple Venn diagrams will 
reveal the following probability rules:

P(A ∪ B) = P(A) + P(B) - P(A ∩ B) and P(A)=1-P(A’) and P(A’)=1-P(A).

Note that in the first rule, the last term is subtracted because it occurs twice, in both A and B.

C. Conditional Probability
The probabilities we have discussed before are unconditional, because no special conditions have been assumed aside 
from the ones which defined the experiment.

If we have additional knowledge about the event, we can alter the probability of its occurrence based upon that 
knowledge.  For instance, we know that the probability of observing an even number on the toss of a die (call it event A) 
is 3/6 = 1/2.  Suppose that we are told that on a particular throw, the number which came up was <= 3 (call this event B).
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We now no longer have reason to believe that the probability of an even number given that the number is <= 3, is 1/2, 
since of the numbers 1,2,3 only 2 is even.  Instead, it has become 1/3.  Our extra information (event B) has changed our 
value of the probability by reducing the sample space, i.e. possible outcomes, by imposing a condition on the event A.

We use the symbol P(A|B) to refer to “The probability that A occurs given that B occurs”.  We define it as: 

P A B P A B
P B

( | ) ( )
( )

= ∩
.  This formula adjusts the probability of A ∩ B from its original value in the complete sample 

space (set of outcomes) to a conditional value in the reduced sample space B (outcomes which fit into result defined by 
B).

Similarly, we can write P B A P B A
P A

( | ) ( )
( )

= ∩
.  The first can be rewritten as P(A ∩ B ) = P(A|B)*P(B).  The second 

can be written as P(B ∩ A ) = P(B|A)*P(A).  But since P(A ∩ B ) = P(B ∩ A ), we can write P(A ∩ B ) = P(A|B) * P(B) 
= P(B|A) * P(A).

This is the multiplication rule.  It states that if we know P(B|A) and P(A), or P(A|B) and P(B), we can find P(A and B). 
If P(A|B)=P(A), then the probability of A is unconditional.  Similarly, if P(B|A)=P(B), then the probability of B is 
unconditional.  This means that the occurrence of A does not influence B, and vice versa.  In other words, A and B are 
statistically independent.  If A and B are independent, P(A ∩ B )=P(A)*P(B).  This follows from the re-written 
equations: P(A ∩ B) =P(A|B)P(B) =P(A)P(B), since P(A|B)=P(A).  This is an extremely important property!

D. Example using Contingency Table
Let’s go back to the table used in the χ2 example, where we looked at political parties and alcohol consumption.

Political Party

PC Liberal NDP Reform Totals
Preferred None 4 ( 6.3) 7 ( 6.4) 7( 6.2) 10 ( 9.1) 28
Beverage Beer 8 (16.4) 16 (16.8) 22 (16.1) 27 (23.7) 73

Wine 21 (10.6) 10 (10.8) 6 (10.3) 10 (15.3) 47
Spirits 12 (11.7) 13 (12.0) 9 (11.4) 18 (16.9) 52
Totals 45 46 44 65 200

Dividing each row total by 200 (n) gives the probability of selecting a person who prefers a certain type of beverage. 
Dividing each column total by 200 gives the probability of selecting a person who prefers a certain political party. 
Dividing each element of the table by the appropriate row or column total will produce two conditional probabilities. 
Dividing by row total will give P(party|beverage).  Dividing by column total will give P(beverage|party).

Why is this?  Go back to the conditional probability formula.  A given cell entry / n gives a P(Party and bev).  A given 
row total / n gives P(bev).  Hence, P(party and bev) / P(bev) = P(party|bev).  Dividing the cell entry by the row total will 
give the same results as dividing the probabilities, because the n’s will cancel out (and you can save some work).

Now we have another way to test for independence of the two variables.  For example, let’s check NDP supporters and 
wine drinkers.  Does P(NDP&Wine)= P(NDP|Wine)P(Wine)= (6/47)(47/200) = 6/200 in fact equal P(NDP)P(Wine)= 
(44/200)(47/200)?  Well, they don’t, so NDP and wine drinkers are not independent, and hence party affiliation and 
booze consumption are not independent.  This agrees with our previous finding using the χ2 statistic.  If the numbers in 
the table had been distributed with their expected values, we would have found that P(Party & bev) = P(Party|
bev)P(bev).  By dividing the row and columns sums by n, we have generated 2 separate relative frequency distributions. 
They are called marginal probabilities because they appear in the margins of the tables.

E. Bayes’ Theorem
So far we have been looking at prior probabilities, which are assignments of numbers to events before the samples are 
selected.  We now look at posterior probabilities, in which we’ve drawn the sample and look back to figure the 
probability it was drawn in a certain way.  In essence, we will be trying to compute a conditional probability when we 
are given information involving at least one other conditional probability.  This is how to recognize a Bayes’ Theorem 
question.
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i) Example 1: The False Positive Paradox
(stolen from the Cartoon Guide to Statistics!).  Suppose there is a good, but not perfect, test for a disease which affects 1 
Smurf in 200.  If a Smurf has the disease, the test is positive 99% of the time.  However, it returns false positives (Smurf 
not sick) 2% of the time.  If Hypochondriac Smurf tests positive, what is the chance he has the disease?

We have two events to examine: B Hypochondriac Smurf has the disease, A he tests positive.  The information we have 
been given is: P(B)=0.005 (1 Smurf in 200 has it); P(A|B)=0.99 (positive test given sick Smurf); P(A|B’)=0.02 (positive 
test given healthy [i.e. not sick] Smurf).  We want to know P(B|A), the chance that the Smurf has the disease given a 
positive test.

The best way to solve one of these problems is to construct a table of probabilities.

Test \ Health Sick Smurf (B) Well Smurf (B’) Sum
Pos Test (A) P(B & A) [0.00495] P(B’ & A) [0.0199] P(A) [0.02485]
Neg Test (A’) P(B & A’) {0.00005} P(B’ & A’) {0.9751} P(A’) {0.97515}
Sum P(B) [0.005] P(B’) [0.995] 1

Numbers in [ ] are given; numbers in {} are computed.

Let’s fill in the table entries that we know or can calculate.  First, we were given P(B)=0.005, so we can compute P(B’) 
immediately as being 1-0.005 or 0.995.  Next, we know P(B & A) = P(A & B) = P(A|B)P(B) = 0.99*0.005 = 0.00495. 
P(B’ & A) = P(A & B’) = P(A|B’)P(B’) = 0.02*0.995 = 0.0199.

Using the multiplicative rule, P(B|A)=P(B & A)P(A) = 0.00495/.02485 = 0.199.  In this particular case, it wasn’t 
necessary to construct the entire table, but it never hurts to do so!

What this example shows is that if Hypochondriac Smurf tests positive, there is really only a 20% chance (1 in 5) that he 
is sick!  At least we have increased his chances of diagnosis from 1 in 200 to 1 in 5.  Note that the false positives come 
from the much larger uninfected group.

Simple Bayes’ Theorem:  P B A
P A B P B

P A B P B P A B P B
( | )

( | ) ( )
( | ) ( ) ( | ' ) ( ' )

=
+

What does this mean?  The formula was derived right from the table.  P(A|B)P(A) is just P(B & A), and the denominator 
is just P(B), expressed as the sum of the probabilities in the row.

ii) Example 2: Urn and Ball problems
These are old standbys that always appear when you least want them to (such as on an exam).  (Note that an urn is a 
ceramic container used in the old days to hold liquids like wine or oil.)  A typical problem has a number of urns each 
containing different numbers of coloured balls.  If you draw a coloured ball, what is the probability you got it from a 
particular urn.  However, they can come in other forms, such as this:   Suppose that 3 guys share a house somewhere, 
and that the first guy up makes the coffee so they can get started on another hard day’s studying.  Joey is first up 30% of 
the time, Danny 50%, and Eddie 20% of the time.  Joey, Danny and Eddie make lousy coffee 10%, 15%, and 20% of the 
time.  If the coffee is lousy, what is the probability of its having been made by Danny? Joey? Eddie?

Problems of this sort are best done by drawing a probability tree.  First, let’s label the event Joey makes coffee J, Eddie 
E, and Danny D, and let L be the event lousy coffee (L’=good brew).  We are asked to find P(D|L), P(J|L), and P(E|L). 
L is the prior event, i.e. the “given”, and it forms the first set of branches of the tree.  The others are the conditional 
probabilities (i.e. prob of lousy given Danny); they go in the second level.

      Prior probs     cond probs        events   Joint probs
   |--P(D)=0.5--*D----P(L|D)=0.15---*L   D&L   P(D&L)=0.5*0.15=0.075
   |               |--P(L’|D)=0.85--*L’  D&L’
   |
*--|--P(J)=0.3--*J----P(L|J)=0.10---*L   J&L   P(J&L)=0.3*0.10=0.03
   |               |--P(L’|J)=0.90--*L’  J&L’
   |
   |--P(E)=0.2--*E----P(L|E)=0.20---*L   E&L   P(E&L)=0.2*0.2=0.04
                   |--P(L’|E)=0.80--*L’  E&L’
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The probability of lousy coffee, P(L)=P(D&L)+P(J&L)+P(E&L)=0.145.  To answer the question,

P(D|L)=P(D&L)/P(L)=0.075/0.145=0.517.

P(J|L)=0.03/0.145=0.207.

P(E|L)=0.04/0.145=0.276.

The general Bayes’ Theorem is:  P B A
P A B P B

P A B P B P A B P A B
( | )

( | ) ( )
( | ) ( ) ( | ) ( | )j

j j

n

=
+ + +1 1 2 

You get P(A) by summing all the joint probabilities which involve A.

IX. Some Theoretical Frequency Distributions
There exist many different ideal probability distributions that come up when different things are studied.  Only 4 of them 
are covered in the text, since they are the ones most likely to occur in a geographical context.

Some Terms
A random variable is variable whose observed values are determined by chance.  We can usually determine the 
probability that a random variable will assume a certain value.  Random variables are denoted by a capital letter (e.g. X), 
while outcomes are denoted by a lower-case letter, often with a subscript attached to denote the observation number (e.g. 
xi).

A discrete random variable has a countable number of outcomes.  For instance, the result of die rolls, poker hands, 
coin tosses.  The number may be large, but it is not infinite, so that the probability of an event will be (usually) greater 
than zero.

A continuous random variable can assume any value within one or more ranges.  For instance, a textbook’s weight can 
be anything between 0.5 lbs and about 15 lbs, to as many decimal places as you want.

Because there are an infinite number of possible values in the range(s), the probability of the variable equalling a 
particular value is zero!  Probabilities for continuous variables are expressed as P(a≤X≤b), the chance the variable’s 
value falls within the range [a,b].

A probability distribution for a random variable refers to the relative number of times we would expect to get each 
value of a random variable, based on a very large number of outcomes.  All distributions must follow these 2 rules: a) 
the sum of all the probabilities must be 1, and b) the probability that the variable assumes a certain value [written as P(X 
= xi)] must be ≥ 0.

The probability distribution of a continuous random variable is a continuous distribution, while that of a discrete random 
variable is a discrete distribution.  The equation which generates the characteristic curve of a continuous distribution is 
called the probability density function.

A finite distribution is one in which the range of values that can occur in it is limited, i.e. between some a and b.  The 
values of an infinite distribution are unlimited, i.e. from -infinity to +infinity (or -infinity to b or a to +infinity).

The mean of a probability distribution can be found by multiplying each value in the distribution by the probability of 
its occurrence, and adding all the results together.  We use µ to denote the mean because it can be thought of as the mean 
value of the variable found from a very large number of repetitions of the experiment which produces the distribution.  A 
mathematical term for the mean is the expected value, but typical to mathematics the word “expected” doesn’t have its 
regular meaning.  It is written E(X).

Definition:  The mean of a discrete random variable is µ = ∑E(X) = i i
i=1

n

x p x( ) .  Note that we usually use the short 

form p(xi) instead of P(X = xi).  For a continuous distribution, we have to use an integral expression, similar to the 
summation expression.
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Definition:  The population variance of a discrete random variable is the average of the squared distance between xi and 

µ, i.e. ( )[ ] ( ) ( )σ µ µ2 2 2= − = −





∑E i i

i=1

n

ix x p x

The standard deviation of a random variable is defined as usual, i.e. the square root of the variance.

You will not be expected to compute these yourself, but I thought you’d at least like to know where the formulas come 
from.

A. The Uniform Distribution
This is probably the simplest of the distributions.  Each value of the variable occurs with equal probability for a discrete 
distribution.  The probability density function is a constant over the range of values.

It is a finite distribution, and can be discrete or continuous.

When used:  This shows up when you have sampling with replacement, since each element has an equal probability of 
being chosen.  Also, if you have no idea how a variable is distributed, the usual initial assumption is uniformly.  For 
instance, the location of a short in a 5-m wire could have an equal probability of being in any given 1-cm length of wire.

Continuous:  f(x)=1/(b-a), a≤x≤b; =0 otherwise.  ( )
µ σ= + =

−b a b a
2 12

2

 and 2

Discrete:  If the range [a,b] is divided into k subintervals, p(xi) = 1/k.  If the range [a,b] is a set of integers, k=(b-a+1). 
( ) ( ) ( ) ( ) ( ) ( )

µ σ=
+ − −

=
− − +

=
− +b b a a

k
b a b a k k1 1

2
2

12
1 1
12

 and 2 .

B. The Binomial Distribution
When used:  This distribution occurs when the event can have only 2 outcomes (hit or miss, male or female, heads or 
tails, etc).  It is a finite, discrete distribution.

Binomial variables have certain characteristics:

1.  The sample consists of n independent outcomes.

2.  Only 2 outcomes are possible: “Success” and “Failure”.

3.  P(success) is the same from outcome to outcome, defined as p.

4.  The binomial variable itself is the number of successes in the sample.

5.  Note that the order of successes and failures is not important.

Definition:  ( )P X x
n
x

p px n x( )= =






 − −1

The factor 
n
x







 represents the number of combinations of x successes and n-x failures.  This is because the binomial 

variable is equivalent to drawing x successes and n-x failures without replacement from a population, with order not 
important.

The other terms come from the multiplication rule for independent events.

Example:  Aside from hating Smurfs, Gargamel also hates Christmas.  By November 15, street-corner Santas were 
infesting the city.  He decided to make his anti-Christmas statement (disguised as Papa Smurf of course) with his paint 
pellet gun.  However, he’d had a little too much “medicine” the night before, limiting his probability of hitting a Santa to 
0.3 (he can’t figure out which of the two Santas he sees is the real one!).  Suppose he gets the chance to shoot at 5 of 
them before the authorities close in and he has to use his teleport spell to get away.  What is P(he nails 2)? 3?
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The problem has defined n=5, and p=0.3.  We want P(X=2) and P(X=3).  Substitute into the formula: P(X=2) = C(5,2)
(0.3)2(0.7)3; = 10(0.09)(0.343) = 0.3087.  P(X=3) = 10(0.3)3(0.7)2 = 0.1323.  As you can see, the probability drops 
sharply from P(X=2) to P(X=3).  The shape of the distribution depends on p and n, with it being symmetric for p=0.5 
and skewed otherwise.

If I wanted to find Gargamel’s chance of bagging 3 or more Santas, I’d have to sum P(X=3) + P(X=4) + P(X=5).  This 
could get cumbersome if I had n=100 and wanted P(X≥40), so tables are available, or certain approximations could be 
made using other distributions.

If p is small and n is large, and np ≤ 7, the Poisson distribution gives a good approximation to the binomial.  If 10≤ n 
≤25 and p=0.5, or n ≥ 25 and 0.2 ≤ p ≤ 0.8, the normal distribution gives a good approximation.

Mean:  µ = np   Variance: σ2 = np(1-p)

Griffith and Amrhein, pp. 173-174 gives an example of another use for the distribution, as a way to test the 
representativeness of a sample.

C. The Poisson Distribution
When used:  Primarily in describing the number of events that will occur in a specific period of time, length, area or 
volume.  Examples:  The number of traffic accidents per month at an intersection, number of surface defects on a new 
car, number of diseased trees in an acre of woodland, people in lineups, thunderstorm occurrences in an area, and in 
quadrat analysis, which was discussed earlier.

Characteristics

1.  The number of times an event occurs during a given period of time, or given area, volume, distance or some other 
unit of measurement) is counted.

2.  The probability that an event occurs in a given unit of time, distance, etc. is the same for all units.

3.  The number of events that occur in a given unit of time, area, distance, etc. is independent of the number that occurs 
in other units.

4.  The mean or expected number of events in each unit is denoted by the Greek letter λ.  It is either known from past 
experience (for instance, a hospital would have records of the average number of people coming to emergency per hour), 
or for a binomial approximation λ = np (i.e.  the mean of the binomial distribution).

Definition:  P X x e
x

x

( )
!

= =
−λ λ

Example: Hailstorms in a Midwest county.  In the American Midwest, hailstorms are a constant threat during the 
summer.  Over a 35-year period, there were 10 years without storms, 12 with one storm, 9 with 2, 3 with 3, and 1 with 4. 
The observed probability of a year with 0 storms is thus 10/35, 1 storm 12/35, etc.  Since 43 storms occurred, the 
temporal average is 43/35=1.23 storms per year.

To find out if the pattern is indeed random, we need to compare the observed probabilities and/or frequencies with the 
Poisson distribution of expected hailstorms per year.  We use the observed temporal average of 1.23 for λ, and substitute 
the values of 0, 1, ..., 5 into the Poisson formula.

Storms per 
year

Obs Freq of 
Years

Total 
Storms

Obs Prob of 
Years

Poisson 
Prob

Expctd Freq 
(years)

 0 10 0 .285 .292 10.2
 1 12 12 .343 .360 12.6
 2 9 18 .257 .222 7.8
 3 3 9 .086 .091 3.2
 4 1 4 .029 .028 1.0

 5+ 0 0 .000 .007 0.2
TOTAL 43 1.00 1.000 35.0 35.0

Mean: µ = λ   Variance: σ2 = λ
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The mean should be λ, of course, since that’s how we defined the distribution.  The interesting part is that the variance 
also equals λ.  Beware of the error in the Griffith and Amrhein text, p. 177, which defines the coefficient of variation σ/
µ as 1 for a Poisson distribution.  It can’t be so, according to the definitions!

D. The Normal Distribution
This is probably the most important of all the probability distributions.  Among other things, people’s weights, heights 
and shoe sizes are normally distributed, as are annual rainfall and temperatures of a region, IQ scores, test scores, and 
most natural phenomena in general.  Many more variables can be approximated very well by normal distributions.

Measurement errors are also normally distributed, and this is in fact how the distribution was initially discovered.  In the 
1700’s there was a brilliant German mathematician named Gauss.  One night he was in an observatory with some 
students charting star locations.  He got annoyed at one whose measurements were inconsistent, but to his surprise found 
that he couldn’t get the same measurement twice either.  When he sat down to look at the results, he found that the errors 
fell into a bell-shaped pattern.  The curve is also called “Gaussian” after its discoverer.

It is a continuous infinite distribution.  It is defined in terms of its mean and standard deviation by the following 

equation:  p x x( ) exp= − −

















1
2

1
2

2

σ π
µ

σ
, where, as usual, µ is the mean and σ is the standard deviation.

i) The Standard Normal Distribution
The shape of the distribution for any normal random variable depends on both µ and σ.  Since these can take any 
combination of values, it is obviously impractical to compute tables for them all.  However, it is possible to 
mathematically transform any normal distribution to a standard one with a mean of 0 and a std dev of 1.  We use the z-

score for this:  z x z x x
s

=
−

= −µ
σ

 or  .  Recall that earlier in the course, the z-score was defined as the number of 

standard deviations away from the mean the value x is.  This is still the case.  Because there is no closed form solution 
for the integral of the equation, values have to be computed numerically and are presented in standard tables, including 
the one on p. 458 of Griffith and Amrhein.

ii) Using the table
Using the table is easy.  The numbers represent the area under the curve from 0 to z, where z is positive.  Suppose you 
want to see what P(0≤ z ≤1.45) is.  Look down the leftmost column of the table until you see 1.4.  Then move across the 
row until you are in the 0.0500 column.  The value 0.4265 is the result we seek.  Notice how the numbers in the table 
increase from top to bottom and from left to right.

iii) More advanced examples
It is always beneficial to draw a sketch of what you are trying to do to avoid confusion!

P(0 ≤ z ≤ a):  Use the table value.

P(z ≤ a):  This is 0.5 + table value.  Since the curve is symmetric, and since the area under it is by definition 1, the area 
from -infinity to 0, which is half the area under the curve, is 0.5.

P(z ≥ a):  This is 0.5-table value.  Since we know the table value is the area from 0 to a, and the total area from 0 to 
infinity is 0.5, we find the unknown area by subtraction

P(z ≤ -a):  Here we exploit the symmetry of the curve.  P(z ≤ -a) is exactly the same as P(z ≥ a), i.e. 0.5-table value for 
z=a.

P(-a ≤ z ≤ 0):  Again using symmetry, this equals the table value for P(0 ≤ z ≤ a).

P(z ≥ -a): Again using symmetry, this equals P(z ≤ -a) or 0.5 + table value.

P(a ≤ z ≤ b): This equals P(z ≤ b) - P(z ≤ a), where the latter two probabilities are found using the above methods.

Example:  Al Bundy has to keep enough shoes in stock to make a success of his shoe store (ha-ha).  Let’s say that the 
length of a woman’s foot is a normal random variable with mean of 20 cm and a standard deviation of 5 cm.  If, on 
average, he sells 300 pairs of shoes of a certain popular style a week, how many of these pairs will be size 25? 18? 
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Between 25 and 18?  Note that a shoe “size” for this problem is designed to fit a foot of length “size” plus or minus 0.5 
cm.

a) First we want to find P(size 25)=P(24.5 ≤ length ≤ 25.5).  When we convert the two numbers to z-scores, we get 
P(0.9 ≤ z ≤ 1.1)=.3643-.3159=.0484.  To convert to an expected number, multiply p*n: 0.0484*300=14.52 or 15.

b) Next we want to find P(size 18)=P(17.5 ≤ length ≤ 18.5).  Again converting to z-scores we get P(-0.5 ≤ z ≤ -0.3). 
Using the symmetry of the curve, this is the same as P(0.3 ≤ z ≤ 0.5)=.1915-.1179=.0736, and the expected value is 
p*n=.0736*300=22.08 or 22.

c) Here we want to find P(size 18 ≤ size ≤ size 25).  The absolute minimum of foot size in this range is thus 17.5 (the 
smallest foot size 18 will fit) and the maximum foot size is 25.5 (the largest foot a size 25 will fit).  So the real 
problem is P(17.5 ≤ length ≤ 25.5).  As z-scores, it is P(-0.5 ≤ z ≤ 1.1).

Because this involves both a positive and negative z-score, we must derive the result step by step.  First, P(-0.5 ≤ z 
≤ 1.1)=P(z ≤ 1.1)-P(z ≤ -0.5).  From above, we know P(z ≤ 1.1)=0.5+P(0 ≤ z ≤ 1.1), the table value.  Also from 
above, we know P(z ≤ -0.5)=0.5-P(0 ≤ z ≤ 0.5), the table value.  Now we substitute these results into the first to get 
[0.5+P(0 ≤ z ≤ 1.1)] - [0.5-P(0 ≤ z ≤ 0.5)] to get the formula P(-0.5 ≤ z ≤ 1.1) = P(0 ≤ z ≤ 1.1)+P(0 ≤ z0 ≤ .5) = .
3643+.1915=.5558.  The number of pairs of shoes Al can expect to sell is thus 0.5558*300=166.74 or 167.

E. Doing problems
Like with general probabilities, the hardest part of doing any problem involving probability distributions is identifying 
which one to use to solve the problem.  Sometimes the problem’s wording will include a phrase like “variable xxx 
follows a yyy distribution”, in which case you don’t have to worry about it!

You may find it helpful to remember that binomial variables involve counting the number of successes and failures, 
Poisson variables involve counting the occurrences of something in space or time, and normal variables describe the 
variation of some natural quantity.  Once the distribution has been determined, the rest is just mechanical, substituting 
the appropriate values into the formula and/or looking the number up in a table to find the result.

It is worth noting that the area under the normal curve from -1 to +1 is .6413; -1.5 to +1.5 is .8664; and -2 to +2 is .
9544.  In other words, about 64% of observations of a normal random variable should occur within 1 standard deviation 
of the mean; about 87% should be within 1.5 std. devs, and about 95% should be within 2 std. devs of the mean.  Hence, 
the further away from the mean an observation is, the less likely it is to have occurred, and the more significant it 
becomes.

F. How to Bell Grades
The underlying assumption is that marks are normally distributed.  Some departments, whose names shall not be 
mentioned, are more fanatical than others in determining that class marks should have a predetermined mean and 
standard deviation.  If these arbitrary demands aren’t met, or if an exam has an unexpectedly poor (or good!) showing, 
the marks can be adjusted from the original distribtion to a new, more satisfactory distribution, a process commonly 
referred to as “belling” or “marking on the curve”.

Doing this is actually a simple procedure.  First you compute the mean and standard deviation of the actual grades in the 
usual way.  Next, compute the z-scores for each mark in the usual way.  Finally, given the z-score and the desired mean 
µ2 and standard deviation σ2, the new grade can be computed using ′ = +x zi iσ µ2 2 .  To do it all in one step, use 

( )′ = − +x xi i
σ
σ

µ µ2

1
1 2 .  Note how this formula can be written in the same form as to the z-score formula: 

′ =
− ′

′
x

x
i

i µ
σ

, where ′ =σ
σ
σ

1

2
 and ′ = − ′µ µ σ µ1 2 .  Instead of converting the observation to the usual 

standardization (mean of 0 and standard deviation of 1), we are converting it to an alternative standardization with 
mean ′µ and standard deviation of ′σ .

X. SAMPLING DESIGNS
As was mentioned near the beginning of the year, statistics serves two purposes, to describe the characteristics of a data 
set, and to make inferences about a population based upon a sample drawn from it.  Having discussed descriptive 
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statistics, we are now ready to ready to enter the great and glorious world of inferential statistics, which we will be 
spending the rest of the year reviewing.  The most important aspect of inferential statistics is the selection of the 
sample.  If you don’t have a reliable way to get a representative sample, all the statistics in the world won’t help you 
derive any useful information from it.  In the real world, the best way to design an experiment and collect data is often 
not obvious and considerable time must be spent looking at all the various factors which may try to foul things up.

Important factors in the sampling design include identification of the population you’re sampling, ensuring 
representativeness and randomness, the sampling perspective (i.e. replacement, order important) and framework you use, 
and the likelihood of the resulting statistics.  Geographical statistics have their own unique problems, most of which are 
spatially related and difficult to deal with.

A. Geographic Populations
A statistical population is a set of numerical values corresponding to measures taken from a parent population.  If 
geographic references are attached to the values, we will have a statistical geographic population.  An example is the 
average income for each county in Canada.  Defining the population is in itself a challenging task.  For instance, suppose 
you want to find the origins of the students here at U of T.  How do you define “student”?  How do you define “origin”, 
as place of birth, or something based on ethnic group?  Other examples: Study residential patterns of the illiterate.  How 
do you find illiterate people?  How do you define illiterate?  Mobility patterns of the elderly: what types of trips do you 
study?

Another way to define a geographical population is the way in which the region is divided up into units, and using the 
observed map pattern as a sample.  The observed spatial pattern can be regarded as one out of all possible spatial 
configurations that could be formed by the given data.  Consider how Metro is divided up into political ridings, on the 
municipal, provincial and federal levels.  If I’m not mistaken, each riding is designed in such a way as to hold 
approximately the same number of people.  As you can probably imagine, there are a lot of ways you can do this, and the 
current one is just one of them.  Spatial units such as ridings, census tracts, postal codes and so on are known as 
Modifiable Area Units because their shape and size are essentially arbitrary.

As long as the phenomenon being studied is not responsible in some way for the distribution of the boundaries, then the 
map pattern can be reasonably assumed to be a random partitioning of the surface and using it to define a population is 
fine.  An example of where the phenomenon is responsible for the pattern is “gerrymandering”, the (illegal) art of 
redefining electoral districts to include as many of the (usually incumbent) candidate’s supporters as possible.

Another way of looking at it is the randomization outlook, in which the number of different ways the numerical values 
can be assigned to the areal units is examined.  The parent population consists of n! possible map patterns, all of which 
are considered equally likely; the current one is one of these patterns.

There is also a third way of viewing the existence of samples from a geographic population.  Social, economic, physical 
and/or other forces will create a spacial distribution of people over a region.  For example, the building of the railway 
played a major role in defining population patterns in the prairie provinces.  (See, for example, Pierre Berton’s The Last  
Spike.)  However, other factors which operate independently of each other and the primary forces will act to modify the 
distribution.  For instance, a farmer on his way to his new farm might step in a gopher hole and break his leg, and wind 
up selling the property to a neighbour, thus changing the local distribution of farms.

In this case, the geographic population is the spatial distribution without the noise component.

B. Sample Size and Sampling Error
As you should recall from earlier in the year, statistical error is introduced when computations (statistics) are based 
upon a subset of the population (a sample), rather than the entire population.  The object of inferential statistics is to try 
to deduce information about the population in the presence of statistical error, while taking it into account.  As you 
should remember, the definition of a consistent statistic is one whose sampling distribution concentrates at and around 
the value of the corresponding population parameter.  As the sample size n approaches N, the sampling distribution 
should get more concentrated.

The main question of interest is of course, what is the minimum size of n which will get the best tradeoff between 
maximizing the information content of the statistic and minimizing sampling error, while keeping external forces like 
cost of doing the survey at a reasonable level?  This is not easily answered, because the optimal value will depend on the 
underlying population frequency distribution.  This is discussed at great length in Griffith and Amrhein, pp. 202-208. 
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The conclusion drawn is that the minimum value for what is considered a “large” sample size is between 30 and 100, 
with larger values required for more skewed population distributions.

The text example is a demonstration of the central limit theorem, which states that if a random sample of size n is drawn 
from any population, the sampling distribution of x will be approximately normal for a “large enough” n.  The bigger 
the n, the better the approximation.  The more skewed the population distribution, the larger n must be.

C. Random Sampling
In order to make a meaningful inference about a population, it must be defined carefully, and the sample must then be 
selected randomly in some way.  Unfortunately, however, randomness often conflicts with the desire for 
representativeness, because a truly random sample may not necessarily be representative.  For example, most of the 
points randomly selected from an area could be clustered in one corner.

Selection of random numbers is not difficult.  Many scientific calculators now have buttons which will produce a 
uniform pseudo-random number between 0 and .999 (uniform meaning that each number has an equal chance of being 
generated).  Spreadsheets and most computer languages also have pseudo-random number generators.  The term 
“pseudo-random” is used because an algorithm is used to generate the sequence of numbers.  If the same number 
generator “seed” is fed to the algorithm, it will generate the same sequence of numbers.  You can stretch the range of 
random numbers from [0.000,0.999] to [a,b] by performing the following operation: X1=(b-a)*X+a.  That is, multiply 
by the range and add the starting value.  If no calculator is handy, use the random number table.  Start anywhere in the 
table (not necessarily on an edge!) and take any path you like, so long as it doesn’t backtrack or otherwise intersect with 
itself.  You can select strings of more than one digit, too.  To convert to a range [a,b], take a series of 3-digit numbers, 
pretend each is a 3-digit decimal, and use the above transformation.

Note that by using a “truly” random process to select the areas, we are sampling with replacement, since with random 
numbers it is theoretically possible to select the same point more than once.

D. Representative Samples and Sampling Frameworks
As mentioned above, just because a sample is randomly selected does not mean that it is going to be representative.  The 
very nature of randomness means that conceivably all of the points could be in only one part of the area of interest, like 
the upper left corner.

There are ways to ensure greater representativeness, which will be discussed below.  All of these ways involve adjusting 
the probabilities of selecting each of the points in order to reduce the chances of selecting an unrepresentative sample. 
However, all of these ways restrict the number of ways in which samples can be drawn, which in turn reduces the 
number and types of meaningful statistics which can be computed.  If the unequal probabilities that are used are known 
(as from the methods used below), the results can be calculated to take them into account.  If they are not known, you 
can’t make any sort of inference from the statistics because you don’t have any idea of the sampling error.  You always 
have to know how the data was collected in order to make valid inferences!

i) Systematic Selection
In this method, we select elements methodically, without replacement.  For a finite data set with N elements, we can 
always number the elements 1 to N.  We then divide the data set into N/n sub-units, pick a number k between 1 and N/n, 
and pick the k’th element from each of the sub units.  We will thus be picking the elements (k, k+N/n, k+2N/n,..., k+
(n-1)N/n).  The sample size n is restricted in that it must divide evenly into N.  If it doesn’t, not all elements will have an 
equal probability of being selected.  If there are 14 points to choose from, the last 2 points here will only be selected if 
k=1 or 2.  Systematic selection is not so good if the data happens to have a periodic trend equal to N/n. (Consider a 
sinusoid where we sample at same point on each wave.)  After each sample of size n is selected, the ordering of the data 
should be scrambled up before the next sample is selected, to preserve randomness.

A geographical area will be divided evenly in both x and y directions, with widths dx and dy, though the number of 
divisions need not be equal.  A point (x,y) will be selected at random in the first cell, and the other points will be taken 
from the same locations in the other cells, i.e. at (x+k*dx, y+h*dy).  The sample size n will be restricted by the resulting 
grid imposed on the area, since to be systematic, all points in the grid must be sampled.

ii) Stratification
Another alternative to random sampling is to stratify the population.  In other words, the data are divided up into a 
relatively small number of mutually exclusive, collectively exhaustive categories (strata), and then each category is 
sampled randomly.  In a geographic area, these strata may be lowlands and highlands, or river valley, grasslands, and 
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forest, or urban, suburban and rural.  With a group of people, one might stratify by occupation, age, ethnic background, 
religion, or belief in Smurfs.  The primary advantage is that you are ensuring that each subset will be represented in the 
sample, which increases the sample’s chances of being more representative.  By reducing the variability of the sample, 
you are reducing the sampling error as well.

For example, suppose I have an area that is divided into 40 units and I want to sample 11 of them.  The area is organized 
into 5 regions as follows: R1 has 6 units, R2 has 7, R3 has 12, R4 has 10, R5 has 5.  Employing selection with 
replacement (i.e. “totally random”), there are 4011 or 4.1943*1017 possible samples of size 11.

In a stratified sample, I might pick 2 from R1, 2 from R2, 3 from R3, 3 from R4 and 1 from R5 to get a sample of size 
11.  Again using a “totally random” scheme, there are only 62*72*123*103*51 = 1.5421 * 1010.  In other words, 
according to this stratification scheme, only 3.6 * 10-6% of the possible random samples are considered to be 
representative!

Stratification may be proportional, when the same number of samples is taken from each stratum, or disproportional. 
The latter is best used when there are significant differences between the sizes and or homogeneity of  the 
subpopulations in the strata, and/or when there is a significant difference in cost collecting data between the subregions. 
For example, you can expect it to be cheaper to collect data on plant diversity from a field than from a swamp.  You can 
also get away with collecting fewer points from a very homogeneous stratum, since a smaller sample is almost 
guaranteed to be as representative as a larger one.  One must beware of course that a stratum may be very homogeneous 
with respect to one variable, but heterogeneous with respect to another.  For instance, a group of people with the similar 
heights can have widely varying weights.

iii) Cluster Sampling
In stratified sampling, the population is divided into groups (strata) and we sample from every stratum.  In cluster 
sampling, we divide the population into groups called clusters and sample among the clusters.  The primary reason for 
this is to reduce cost in data collection, especially for surveying people.   The easiest example is dividing a city into 
census tracts.  In cluster sampling, we would select some of the census tracts to collect lots of data from (perhaps 
sampling each person or area).  In stratified sampling, we would sample a few points from each tract.  Stratified 
sampling works best if the regions are as homogeneous as possible so that relatively few points can represent each 
region well.  Sampling error will arise primarily from variability within the strata.  Cluster sampling works best if the 
regions are as heterogeneous as possible.  Sampling error will occur because of variability between clusters, since each 
element in the cluster (ideally) would be sampled.

For the majority of the case, cluster sampling will produce greater sampling error (less efficient) than random or 
stratified sampling.  Consider a census tract type survey of incomes.  Cluster sampling could give rather skewed results 
if, say, all of your selected tracts happened to be in swishy areas of town or in areas with lots of subsidized housing 
projects.

E. Geographic Sampling
Spatially distributed samples seek to provide information about the geographic distribution of the variable being studied. 
Any sample that is selected should allow us to infer information about its parent population. As usual, the spatial aspect 
makes everything a lot more complicated.  Griffith and Amrhein, p. 215, illustrates several of the techniques.

Random spatial samples are not likely to be as representative as we would be like.  It can be shown that selecting the x 
and y coordinates at from a uniform random distribution will produce a Poisson distribution of points, which is not 
spatially uniform.  It may also be difficult to locate a point randomly selected from a map when you are in the field 
(especially if it is in the middle of a swamp or dense bush).

Systematic sampling can be done over the area, sampling points on a grid.  As with regular systematic sampling, if the 
data are periodic in some way then systematic sampling may give an unrepresentative sample.  As with the regular 
systematic sampling, the number of points in the sample will be constrained by the grid size.  It is apparently better to 
use squares than rectangles.

Random stratified sampling can be done by dividing the area into different regions and randomly sampling from each 
region.  The regions could be based on natural features such as landforms, or be totally artificial, such as quadrats.  The 
distribution of points in each quadrat would be Poisson, but at least you’d be guaranteed a sampling from the entire area.

Cluster sampling can be done either of two ways, both of which involve the use of a square as the cluster.  In the first 
way, a square grid is superimposed on the area and squares (clusters) are selected at random.  In this case, the size of the 
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squares and locations of the grid lines are issues.  In the second way, the centres of the squares and their orientations are 
selected in some manner so that overlapping is possible.  Location can be selected at random or in some stratified 
random way.

Transects are a useful way to collect data in an area.  All you do is collect data from a bunch of points in a line (or 
several lines) which cross the area.  This is the best way to sample things like vegetation or rock types in a previously 
unexplored area.  Transect lines can be chosen with the barest minimum of information and still yield statistically good 
results.  The ability to control the orientation, placement and point spacing may improve the representativeness of a 
sample from an area which has a high degree of spacial autocorrelation.  An area can always be stratified and transect 
lines drawn through the regions, and/or the lines can be drawn in a regular pattern.  Of course, the orientation, length, 
and number of traverse lines, as well as the frequency and spacing of points along the lines all have to be selected, and 
carefully.  Random traverse lines will tend to have a Poisson distribution, and as usual may not give a representative 
sample.  Lines that are drawn in corners are not as useful as those through the middle.  For these reasons, placement and 
orientation of lines are usually nonrandom.  Selecting the points along the transect is a whole different kettle of fish.

F. Some other problems
Aside from other drawbacks mentioned above, here is another. The presence of positive spatial autocorrelation (i.e. 
similar values tending to cluster) means that there is less information in the geographic data than one might expect, since 
there is a pattern.  In this case, systematic point sampling is the best option, followed by stratified random sampling or 
systematic traverses.

XI. Concepts for Inferential Statistics
As has been mentioned previously, one of the objectives of statistics is to be able to make a statement about a population 
parameter once the corresponding sample statistic has been calculated.  This is an example of inductive reasoning: 
given one sample, we ask what was the random system that generated its statistics?

Inferential statisics comes in two flavours, estimation and hypothesis testing.  In estimation, we use our sample to 
compute a guess, also known by the more politically correct term of “statistic”, as well as an idea of how close we think 
it is to the parameter.  Hypothesis testing involves checking to see if a claim about the true value of a parameter is valid 
or not.

A. Estimation: Large-Sample Estimate of a Population Mean
Another term for statistic is point estimate, since we are estimating the parameter value.  A point estimator is the 

mathematical way we compute the point estimate.  For instance, 
1
n

x i
i=1

n

∑  is the point estimator used to compute the 

estimate of the population mean x .  Because of sampling error, we know that it’s not likely that our sample statistic will 
be equal to the population parameter, but instead will fall into an interval of values.  We will have to be satisfied 
knowing that the statistic is “close to” the parameter.  That leads to the obvious question, what is “close”?  We can 
phrase the latter question differently:  How confident can we be that the value of the statistic falls within a certain 
“distance” of the parameter?  Or, what is the probability that the parameter’s value is within a certain range of the 
statistic’s value?  This range is the confidence interval, which is the probability that the value of the parameter falls 
within the range specified by the confidence interval surrounding the statistic.

Example of Confidence Interval:  Suppose that Gargamel’s friend Amy Surplus gives a warranty that her shotguns 
shoot pellets that will be within 15 cm of the intended target 95% of the time at a range of 10 m.  In other words, if 
Gargamel fires at a paper target’s bull’s-eye 10 m away, and if he were to draw circles of 15 cm radius around each hole, 
95% of those circles will include the bull’s-eye in the long run.  The exact number will vary, of course, from sample to 
sample (i.e. shot to shot).  Another example is on p. 225 of Griffith and Amrhein.

Recall the Central Limit Theorem, which applies to the sampling distribution of the mean of a sample.  Consider 
samples of size n drawn from a population, whose mean is µ and standard deviation is σ with replacement and order 
important.  The population can have any frequency distribution.  The sampling distribution of σ will have a mean 
µ µx =  and a standard deviation σ σx n= / , and approaches a normal distribution as n gets large.  This allows us 
to use the normal distribution curve for computing confidence intervals.

The unit of measurement of the confidence interval is the standard error.  This is just the standard 
deviation of the sampling distribution of the statistic.
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So how do we go about computing a confidence interval?  The first step is to find how many standard errors away from 
the mean we need to go (on both sides of the mean) in order to find the area under the normal curve which is equal to the 
value of our confidence level.  The z which fills this criterion is called zα/2.  For example, for a 95% confidence interval, 
we want to find out which z will give us P(-zα/2 ≤ z ≤ zα/2) = 0.95.

Where does the zα/2 come from?  In order to confuse the layman, statisticians don’t refer to the area under the normal 
curve they want, but instead refer to the area that is left out by the confidence interval.  When we want a 95% 
confidence level, they say we want to ignore 5% of the area under the curve.  This ignored area is the α Furthermore, the 
ignored area is under the tails of the curve, so half of it is assigned to be under each tail, hence the α/2.  Basically, when 
we think “95% confidence level”, the statistician thinks “100(1-0.05)% confidence level”, or in general 100(1-α)%.

To find we use the table to find the z whose value is such that P(0 ≤ z  ≤ zα/2) = 0.5-α/2.  Remember, we’re subtracting 
the area under the tail from the whole area from 0 to infinity.  Look in the table until you see a number equal or close to 
0.5-α/2, then find the z corresponding to it.  To save you from doing this all the time, here are the z values 
corresponding to the most commonly used confidence levels.

100(1-α)% α α/2 zα/2

90% 0.10 0.05 1.645
95% 0.05 0.025 1.96
99% 0.01 0.005 2.58

Now that we know how many standard deviations away from the mean we have to go to get our confidence interval, we 

can compute it using the formula ( ) ( )[ ]µ σ µ σα α− ≤ ≤ +z n z z n/ // /2 2 if we know the population parameters 

(for instance, from a distribution problem), or ( ) ( )[ ]x z s n z x z s n− ≤ ≤ +α α/ // /2 2  if we are estimating the 

parameters.  The term z nα σ/ /2 is also called the margin of error.

Important note! There is an “official” name for what we are doing here:  Large-sample estimation of a population  
mean.  We are computing an estimate and confidence interval for a population mean, and the Central Limit Theorem 
allows us to use the normal distribution table to compute the CI.

Example

Bob wants to get elected as Sesame Street’s Dictator-for-Life.  Of the 1000 voters polled, 550 claimed they would vote 
for him.  Construct the 90%, 95%, and 99% confidence intervals for p, the probability he gets elected.

The election result for Bob is a binomial random variable, with n=1--either the voter votes for him or doesn’t in the one 
election.  The poll is trying to estimate the true probability the person will vote for Bob, p.  Our estimate for p is 
550/1000=0.550.  The standard deviation of the sampling distribution (standard error) is σ / ( ) ( ) /n p p n= −1 1
, which equals . (. ) /55 45 1000 . NOTE: The n in the binomial distribution’s σ is different from the sample 
size n!

To compute the confidence interval for each confidence level, multiply this number by the appropriate zα/2.

CI zα/2 Mrg Err Lower Upper
90% 1.645 .026 .524 .576
95% 1.96 .031 .519 .581
99% 2.58 .041 .509 .591

As you can see, the greater the confidence level, the wider the confidence interval will be.  In the long run, we can 
expect the probability of a vote for Bob to be in the first range 90% of the time, in the second range 95% of the time, 
and in the third range 99% of the time.  (Not that the polls really matter, since Sesame St. elections are won by the 
number of ballot boxes you can misappropriate and stuff.)

Doing these large-sample estimates of the mean problems is easy.  All you need is the sample mean and standard 
deviation, or some way to get them.
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B. Determining a Minimum Sample Size
As can be seen by the formula, the standard error will decrease as n increases.  If we decide to fix the margin of error at 
some “upper limit”, given the confidence level and the standard deviation we can compute the n that will give this upper 

limit.  ( )n z ME= α σ/ /2
2

 where ME is the required margin of error.

Example

A hospital studied the records of 100 patients to determine the average length of stay.  It was found to be 4.65 days, with 
an s of 4.9 days.  The margin of error for a 95% confidence interval is 1.96*4.9/100.5 or .96 days.  Suppose we want to 
estimate µ to within 0.25 days.  How many records would have to be reviewed?  (Note: with a large sample size, we can 
safely approximate σ with s.)

Margin of error is .25, s = 4.9, and zα/2 = 1.96.  Substituting these values into the formula gives n = 1475.8 or 1476.  As 
you can see, the inverse square root dependence means that you have to get increasingly large sample sizes in order to 
get smaller margins of error.

C. Small-Sample Estimation of the Mean
More often than not, we won’t have the luxury of a large sample, i.e. n < 30, or even n < 100 for some underlying 
distributions.  We can no longer assume the sampling distribution of x is approximately normal, since the Central Limit 
Theorem assumes normality only for large samples.  Not only that, but s becomes an increasingly poorer approximation 
for σ as n decreases.

We can dodge around the first problem with the knowledge that if the population distribution is normal or nearly normal, 
the sampling distribution of x will also be normal or nearly normal.  We can dodge the second problem by using the 
student t distribution instead of the normal distribution.

Student’s t distribution is the sampling distribution of the t statistic t x
s n

=
− µ
/

 when we are sampling from a normal 

distribution.  It is actually a family of distributions, with the shape of each determined by the degrees of freedom, which 
are determined by ν = n-1.  Using the degrees of freedom allows us to take the greater variability of the samples due to 
their small size into account.  See Griffith and Amrhein, p. 231 for more details.  As the number of degrees of freedom 
increases, the t distribution approaches the normal distribution.

Constructing a confidence interval for a small-sample estimate of a mean is almost the same as for a large-sample 
estimate, except that you use tα/2,ν instead of zα/2 and you use s instead of σ, which is usually unknown.  In other words, a 

small sample CI is constructed by [ ]x t s n x t s n− +α ν α ν/ , / ,/ , /2 2 .

So how do you find a t value?  In Griffith and Amrhein, p. 459, there is a table of t values, with degrees of freedom 
listed on the left margin and probabilities across the top margin.  Some tables list the α value (i.e. the area under the tail 
from t to infinity) in the top margin, but this table lists the 1-α values (i.e. the area under the curve from minus infinity to 
t).

Example

A drug company is testing a new drug which is supposed to reduce blood pressure.  From the six people who are used as 
subjects, it is found that the average drop in blood pressure is 2.28 points, with an s of .95 points.  What is the 95% 
confidence interval for the mean change in pressure?

For this problem, n=6, so there are 5 degrees of freedom. α=.05, so α/2=.025.  In the table we look up t (.975,5) (since 
the text uses 1- α) by looking down the .975 column until the 5 df row is reached.  This t is 2.571.  The confidence 
interval is thus 2.28 ± 2.571*.95/sqrt(6), or [1.28, 3.28].  That is, we can be 95% confident that the mean decrease in 
blood pressure is between 1.28 and 3.28 points.  In other words, the testing procedure will produce an interval that 
contains the true mean 95% of the time.

Note that because we had a small sample, we had to use the t value 2.571 to form the confidence interval 
instead of the smaller z value of 1.96.  The greater variability due to small sample size requires that we have 
a larger confidence interval.  If we want to narrow the interval, we can always try to get a larger sample.
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Another reason for small samples may be due to the need for destructive sampling techniques.  For example, testing the 
average lifetime of appliances so that the manufacturers can set the warranties to expire just before they self-destruct.

D. Introduction to Hypothesis Testing
As was previously mentioned, evaluating (or testing) a claim (or hypothesis), about the true value of a parameter is 
called hypothesis testing.  The hypothesis we are testing is called the null hypothesis and is denoted by H0.  The use of 
the word “null” suggests the sample statistic we are testing is not different from the parameter value, there is no 
relationship, no improvement, etc.

The statistic is evaluated under the assumption that the null hypothesis is true, kind of like a trial: “innocent until 
proven guilty”.

A second hypothesis about the value, called the alternate hypothesis, denoted by Ha, must also be included with the 
null hypothesis.  The two hypotheses must be mutually exclusive: the null hypothesis says there is no difference, while 
the alternate hypothesis says there is difference.  Rejection of the null hypothesis implies acceptance of the alternate.

i) Test Statistics
To test the hypothesis, you need to construct a test statistic.  It is frequently in a form similar to z=(x-mu)/std err, but 
each test (and there are a lot of them!) has its own special test statistic and distribution with which to test it for you to 
memorize. (Stop whining.  This is good for you.  Really.)

The null hypothesis, with its definition, allows one to construct a sampling distribution that can be used to test it.  This 
distribution is divided into two parts.  Test statistics that fall within what I call the acceptance region, which 
corresponds to the confidence interval, give no reason to disprove H0.  The probability of this occurrence is 1-α.

Convincing evidence in favour of Ha will exist when the sample statistic exceeds the hypothesized value by an amount 
that cannot be readily attributed to sample variability.  These test statistics fall within the critical or rejection region, are 
not consistent with H0, and therefore consistent with Ha, and occur in the tail region (or regions for a two-tailed test).

ii) Types of Tests
The probability associated with the critical region is called the level of significance, α.  This is the probability of  
rejecting the null hypothesis.  The usual values are 10%, 5% and 1%.  The critical value is the value which marks the 
boundary of the rejection region.

A right-tailed test will be used in a situation when we are testing if the parameter is greater than some value.  For 
example, Ha: µ > 2000.  The level of significance will be α= α2.  A left-tailed test will be used in a situation when we 
are testing if the parameter is less than some value.  For example, Ha: µ < 2000.  The level of significance will be α= α1. 
A two-tailed test will be used when we are trying to show that the parameter is either larger or smaller than a given 
value.  For example, Ha: µ ≠ 2000.  In this case, the level of significance must be divided equally among the two tails of 
the distribution, since we must have a rejection region in both directions.  Hence, it will be α/2.

iii) Errors in Hypothesis Testing
Because our hypotheses divide all possible sample outcomes into 2 groups, or populations, any sample we may draw 
will fall in either the population described by the null hypothesis or that of the alternate hypothesis.  However, sample 
variability is such that we may occasionally get a sample which belongs to the population of H0 but which is quite 
unlikely to occur, and hence falls into the rejection region.

Both of the examples to follow are examples of Large-Sample Hypothesis test of a population mean.

Type I Error
Because the sample falls into the rejection region, we reject H0 even though the sample really belongs to that population. 
This is what is called a Type I error.  The probability of this occurring is just α, the size of the rejection region or level 
of significance.

Example of Type I error:  We know that the the mean value you get when throwing 2 dice is 7.  Suppose I threw 2 dice 
40 times and got 10 nines, 10 tens, 10 elevens, and 10 twelves, with x = 10.5 and s = 1.132  This is a relatively large 
sample drawn from a population (of sums of die rolls) which is essentially normal, so we can use the normal distribution 
to approximate the sampling distribution of the sample mean.
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We can define H0: µ = 7.  Our sample suggests an Ha: α > 7.  The test statistic is z x
s n

=
−

= − =
µ

/
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19 6 . 

The critical value for a 5% level of significance in a right-tailed test is zα = 1.645 (i.e. the value of z which gives P(0 ≤ z 
≤ zα)=0.95).  It is obvious that 19.6 is way beyond the critical value, and this would lead us to accept Ha and reject H0 

and create a Type I error.

Type II Error
Similarly, if we draw a sample which belongs to Ha, but appears to occur as H0, we would believe it belonged to H0 even 
though it didn’t.  This type of error is called a Type II error and is usually denoted by β.  It is not at all straightforward 
to compute, as the examples below will show.

Example of Type II error:  Back to the dice.  Suppose I hypothesize that the mean of two dice is 8.  I throw 25 times 
and get 10 sevens, 10 eights, and 5 nines, with x  = 7.8, s = 0.764.  I define my experiment as H0: µ = 8 and Ha: µ < 8. 
Again, since the population is essentially normal, I can get away with using z even with this small a sample size.  The z 
statistic is -1.31, which is greater (i.e. more positive) than the critical value of zα = -1.645.  This means that although our 
mean is less than the hypothesized one, it is not significantly so, so we must accept H0, even though it is false, and thus 
create a Type II error.

The whole problem with errors of course is that we can’t know for sure if we’ve made one or not.  We can only compute 
the probability of committing them and hope that we don’t!

iv) The Power of a Test
The power of a test is the probability that the test will correctly lead to a rejection of H0 for a particular value of µ in Ha. 
It is equal to 1-β for the particular alternative considered.  The greater the power, the better the test.

Example 1: Variation of Power with µ

Suppose that building specifications for a city require that the strength of residential sewer pipe be more than 2400 
pounds per foot of length.   Suppose 50 sections of pipe are tested and found to have a mean strength of 2425 
pounds/foot with an s of 200.  Use α =.05.

From the point of view of the city, the strength of a supplier’s pipe is assumed to be less than its requirements until 
proven otherwise.   Thus, H0: µ < 2400 and Ha: µ > 2400 are the null and alternate hypotheses.  To compute the power, 
we must find β the probability we accept H0 (i.e. we think the pipe is too weak) when in fact it is false (i.e. it meets the 
specs).  So how do we do this?

Find the zα corresponding to the significance level.  Since we are doing an upper-tailed test with α = .05, z=1.645.

Find the value of x which corresponds to the critical z value in the null distribution (mean of 2400): i.e. 

x z nx0 0 2400 1645= + = +µ σ σα . ( / ) .  This is the largest value of x  that supports the null hypothesis.  With 
the large sample size we can approximate σ with s.  Using s = 200 and n = 50, we get x  = 2446.5.

Now we find the z statistic for this x in the alternate distribution, which has a mean of 2425 (the value we found) and 
the same standard error as the null distribution.  This is z = (2446.5 -2425)/(200/√50) = 0.76.

Finally, we find the area of the acceptance region under the alternate distribution.  Remember that since the rejection 
region for H0 is for values greater than the critical value for its distribution, z0=1.645, the acceptance region for Ha is 
for values less than the critical value for its distribution, za=.76.  This area is .7764.

With β =.7764, the power is .2236.  This means that the test will lead to the correct rejection of the null hypothesis only 
22% of the time if the specifications are exceeded by only 25 pounds/foot.

If the sample mean had been 2450 instead of 2425, β would have been .4522 and the power would have increased to .
5478.  If 2475, β =.1562 and power=.8438.  Thus, if the mean strength of pipe exceeds the standard by 75 pounds per 
foot, the chance of correctly rejecting H0 increases to 84%.

Conclusion: Power increases as the distance between the null and sample means increases.

Example 2: Variation of power with α
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Suppose Papa Smurf is testing the effects of an improved version of a certain white powder he has created in his lab. 
His 100 Smurf “volunteers” reacted an average of 1.2 seconds after the old stuff was inhaled through the nose.  Suppose 
that the reaction time of the 100 “volunteers” with the new powder is 1.1 seconds, with an s of 0.5 seconds.  He wants to 
find out if this represents a significant departure from the the old powder.  Find β and the power for significance levels β 
05 and .01.

We can see that H0: µ = 1.2 (assume no change), and Ha: µ ≠ 1.2.  This is a two-tailed test, since if µ isn’t equal to 1.2, it 
is either greater than 1.2 or less than 1.2.  For the rejection region corresponding to α =.05, z0=1.96.

As before, find the values of x corresponding to the critical values.  ( ) ( )100/5.96.12.1/96.100 ±=±= nsx µ  
and the values are thus 1.102 and 1.298.  Remember, these are the values of x  that support H0.

Now find the z values in the alternate distribution, where µa = 1.1.  Lower bound: z(a,L) = (1.102-1.1)/(.5/10)=.04. 
Upper bound:  z(a,U)=(1.298-1.1)/(.05)=3.96.

Rejection region for H0 is z < -z0 or z > +z0.  Hence the acceptance region for Ha is z(a,L) ≤ z ≤ z(a,U).  This is equal 
to .5-.0160=.4840 (the .5 is because the area from 0 to 3.96 is essentially .5).

Hence, β = .4840 and power is .5160.  Thus, the test will lead to a Type II error 48% of the time for an α of .05.

For α = .01, z0= ±2.575, bounds on x are 1.0712 and 1.3288, new z values with µa = 1.1 are -.58 and 4.58, and β = .
7190, power=.2810 (check these yourself!).

Conclusion: As α is decreased, so is the power of the test.

So even though you are decreasing your chances of incorrectly rejecting H0 by reducing α, you are simultaneously 
decreasing your chances of correctly accepting H0 for a given alternative!  Thus, your level of significance must be 
selected carefully, depending on the problem at hand.

This is the end of the lecture notes
I sincerely hope that you found them useful.  Please let me know your opinion of them, and if there are any corrections 
or clarifications to make.

Harold Reynolds
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