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Abstract 
 
 The Modifiable Area Unit Problem (MAUP) has been discussed in the spatial analysis lit-

erature since the 1930’s, but it is the recent surge in the availability of desktop computing power 

and Geographical Information Systems software that have caused both a resurgence of interest in 

the problem and a greater need to learn more about it.  Many spatial datasets are collected on a 

fine resolution (i.e. a large number of small spatial units) but, for the sake of privacy and/or size 

concerns, are released only after being spatially aggregated to a coarser resolution (i.e. a smaller 

number of larger spatial units).  The chief example of this process is census data which are col-

lected from every household, but released only at the Enumeration Area or Census Tract level of 

spatial resolution.  When values are averaged over the process of aggregation, variability in the 

dataset is lost and values of statistics computed at the different resolutions will be different; this 

change is called the scale effect.  One also gets different values of statistics depending on how the 

spatial aggregation occurs; this variability is called the zoning effect.  The purpose of studying the 

MAUP is to try to estimate the true values of the statistics at the original level of spatial resolu-

tion.  Knowing these would allow researchers to attempt to make estimates of the data values us-

ing either synthetic spatial data generators like the one described in this thesis or by other tech-

niques. 
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 Many studies of the MAUP have been made using specific datasets and examining various 

statistics, such as correlations.  Although interesting properties have been documented, this ap-

proach is ultimately unsatisfactory because researchers have had no control over the various 

properties of the datasets, all of which could potentially affect the MAUP.  This research has fo-

cused on the creation of a synthetic spatial dataset generator that can systematically vary means, 

variances, correlations, spatial autocorrelations and spatial connectivity matrices of variables in 

order to study their effects on univariate, bivariate, and multivariate statistics. 

 Even though the MAUP has traditionally been written off as an intractable problem, re-

sults from the various experiments described in this thesis indicate that there is a degree of regu-

larity in the behaviour of aggregated statistics that depends on the spatial autocorrelation and con-

figuration of the variable values.  If the MAUP can be solved, however, it is clear that it will likely 

be a complex procedure. 
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1.  Introduction 

 The Modifiable Area Unit Problem (MAUP), a term introduced by Openshaw and Tay-

lor’s (1979) classic paper, has long been recognized as a potentially troublesome feature of aggre-

gated data, such as census data.  Aggregation of high resolution (i.e. a large number of small ar-

eas) data to a lower resolution (i.e. a smaller number of larger areas) is an almost unavoidable fea-

ture of large spatial datasets due to the requirements of privacy and/or data manageability.  When 

the original data are aggregated, the values for the various univariate, bivariate, and multivariate 

parameters will change because of the loss of information.  This phenomenon is called the scale 

effect.  The M spatial units to which the higher-resolution data are aggregated, such as census 

enumeration areas or tracts, postal code districts, or political divisions of various levels, are arbi-

trarily created by some decision-making process and represent only one of an almost infinite num-

ber of possible partitionings of the region M ways.  Each partitioning will result in different values 

for the aggregated statistics; this variation in values is known as the zoning effect.  As will be 

shown in the following chapters, the statistic values form distributions that are normal or nearly 

so.  The two effects are not independent, because the lower-resolution spatial structure may be 

built from contiguous higher-resolution units, such as census tracts from enumeration areas, and 

the resulting aggregate statistics will be different for each possible arrangement of the high-

resolution units. 

 This research is timely and necessary.  The increasing availability of powerful microcom-

puters, workstations, and Geographical Information Systems (GIS) software suggests that under-

taking complex spatial analyses is no longer limited to those trained in the vagaries of spatial data.  

Large numbers of users are blissfully unaware that aggregation effects may cause widespread mis-

use of results.  For example, Openshaw and Taylor (1979) demonstrate that the sign of the corre-

lation between two variables can change, depending on the spatial resolution of the dataset that is 

used, which means that if the data were to be used to influence a decision in public policy a seri-

ous error could be made.  The stubborn refusal of this problem to be solved analytically, except 

for some carefully defined and unrealistic problems (Arbia, 1989) means that, for the moment, the 

most useful information about the MAUP can only be gleaned through the use of statistical simu-

lations.  Ironically, it is the same increase in computing power that makes the extensive simula-

tions performed for this research possible. 
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 The purpose of this research is to shed some light on the behaviour of statistics that are 

computed with aggregated data by using a set of systematic empirical experiments.  It is hoped 

that the results of these experiments will bring us one step closer to the ultimate goal of being able 

to accurately estimate the true statistical relationships within datasets that, for reasons of confi-

dentiality, size, or other factors, are only available in aggregated form.  Knowing the statistic val-

ues would allow researchers to attempt to make estimates of the data values using either synthetic 

spatial data generators like the one described in this thesis or by other techniques.  Until Amrhein 

(1995), research into the MAUP has primarily consisted of examining the effects of aggregation 

on various statistics, usually correlations, computed from a single dataset.  The primary drawback 

to this method is that the researcher is unable to vary the properties (such as means, variances, 

covariances, and spatial autocorrelations) of the particular dataset, somewhat akin to trying to de-

termine the properties of a forest by studying a few trees here and there. 

 Amrhein’s (1995) study, described in more detail in the next chapter, represents an initial, 

relatively simple, attempt to use synthetic data to study the MAUP by aggregating points into 

squares.  My research required that I extend this process to the ability to control key parameters 

like means, variances, correlations, and Moran Coefficients of spatial autocorrelation, as well as 

the ability to generate connectivity matrices by subdividing a region with random Voronoi poly-

gons (Okabe et al., 1992).  Systematically varying these parameters permits examination of their 

influence on the MAUP, while creating synthetic datasets whose parameters are the same as those 

of a real dataset allows the researcher to ensure that the results obtained are realistic. 

 The second chapter of this thesis presents a literature review that will helps to define its 

context.  The third chapter consists of a detailed description of the spatial dataset generator, the 

aggregation model, and instructions on the interpretation of the diagrams.  Chapter 4 explores the 

effects of aggregation on the variance and the Moran Coefficient, and continues earlier efforts to 

correlate the change in variance to a spatial statistic.  Chapter 5 continues this research with 

analysis of the bivariate statistics covariance, correlation, regression slopes, and the Moran Coef-

ficient of the regression residuals, comparing results to those found in Openshaw and Taylor 

(1979).  Chapter 6 presents the extension of the studies to multivariate regression parameters, 

comparing the results to those of Fotheringham and Wong (1991).  Finally, chapter 7 contains a 

discussion and summary of the conclusions from the previous three chapters. 
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2. Literature Review 

 The Modifiable Area Unit Problem has been recognized in the literature since at least 

Gehlke and Biehl’s (1935) work.  Due to its inherent analytical intractability, it has been either 

downplayed or ignored in various studies using spatial data and in textbooks on spatial analysis.  

Only within the past 15 years or so with the advent of cheaper, faster, and more powerful com-

puters, has an in-depth examination of the behaviour of the MAUP become possible.  The exten-

sive literature can be divided into two broad categories, empirical analyses and theoretical devel-

opments.  I have not tried to make this literature survey complete, since good survey papers 

(Openshaw and Taylor, 1981; Dudley, 1991) exist already; rather it is intended to place my work 

in context of the main body of MAUP research. 

2.1.  Univariate Statistics 

 The behaviour of univariate statistics such as mean, variance, and Moran Coefficient (MC) 

under aggregation has received little attention in the literature, since it is inferences about relations 

between two or more variables that is the focus of most research involving spatial data.  Spatial 

autocorrelation statistics, however, are often used to test for patterns in a satellite image by land-

scape ecologists.  As these patterns influence ecological processes, such as population dynamics, 

biogeochemical cycling, and aspects of biodiversity (Qi and Wu, 1996), it is useful to know how 

the spatial scale of the analysis affects the spatial autocorrelation statistics.  This is problematic 

because the various satellites have different spatial resolutions.  Qi and Wu (1996) and Jelinski 

and Wu (1996) conclude that the Moran Coefficient, Geary Ratio, and Cliff-Ord statistic are scale 

dependent, showing an overall decline in spatial autocorrelation with scale, and are also dependent 

on the zoning system used in the aggregation. 

 Amrhein and Reynolds (1996, 1997) present results based on census datasets from Lanca-

shire in England and from the Greater Toronto Area’s enumeration areas respectively.  The aver-

age variance of the 8 Lancashire variables (all of which were averaged during aggregation) and 

the 5 Toronto variables (the first three of which were summed and the last two averaged during 

aggregation) is found to vary systematically with the change in scale.  The change in variance is 

also found to correlate well for all variables in both datasets with the G statistic (Getis and Ord, 

1992), which was modified by dividing it by the global sum of squares of deviations of the aggre-
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gated variable.  The fit is not as good with the fifth variable of the Toronto dataset, which is likely 

due to the presence of a large number of suppressed (zero) values of the EA average income, but 

the overall results are good enough to indicate the potential of using a spatial statistic to predict 

the effect of the MAUP on an aggregated dataset. 

 Amrhein (1995) is the first paper based solely on statistical simulation of the MAUP.  The 

experiments are based on 10 000 points located randomly within a unit square region, each repre-

senting an individual.  The x and y coordinates are generated first from a uniform distribution and 

then from a normal N(0,1) distribution.  Each location is assigned two values representing ob-

served variables, with the values again being drawn from first a uniform and then a normal distri-

bution, thus creating four combinations in total.  To examine the scale effects, the points are ag-

gregated into 100, 49, and 9 square areal units, and to account for zoning effects, the process of 

aggregating the 10 000 points into the 100 region grid is repeated for 100 independent sets, and 

for 50 sets for the other two grids.  Summary statistics for each aggregation are computed and 

stored for comparison purposes with the original “population” statistics.  It is found that the 

weighted mean does not display any aggregation effects, which is to be expected since the aggre-

gate weighted mean is mathematically identical to the population mean.  The variance is not found 

to display scale effects beyond what could be expected from the decrease in observations, though 

it is noted that scale-specific variance values cannot be imputed to other scales without adjusting 

for the change in number of units.  Populations with higher variances tend to display more pro-

nounced zoning effects than those with a lower variance.  The regression slope coefficient and the 

Pearson correlation coefficient both display scale effects that increase systematically with a de-

creasing number of zones.  The standard deviation of the regression coefficient displays pro-

nounced zoning effects, to the point where it fails to provide useful information.  Sign changes of 

the regression coefficient are also noted.  These results provided the starting point for Steel and 

Holt’s (1996) theoretical results. 

2.2.  Bivariate and Multivariate Statistics 

 Gehlke and Biehl (1935) appears to be the first publication cited that describes an interest-

ing phenomenon, the tendency for correlation coefficients to increase as areal regions are aggre-

gated into fewer numbers of larger regions.  When male juvenile delinquency was correlated with 
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median equivalent monthly rental, the correlation coefficient varied monotonically from-0.502 for 

252 census tracts to -0.763 for 25 regions; delinquency rates varied non-monotonically from -

0.516 to -0.621.  Two other experiments were also performed that illustrated that the method of 

grouping also affected the aggregated correlation. 

 Robinson (1950) examined correlations between race and illiteracy at the U.S. Census Di-

vision (0.946), state (0.773) and individual (0.203) levels, and foreign birth and illiteracy at the 

Census Division (-0.619), state (-0.526) and individual (0.118), but it should be noted that he uses 

data that appear in contingency tables rather than the more usual x-y point data.  He also de-

scribes a mathematical relationship between his “ecological” correlations and individual correla-

tions and asserts (correctly) that one should not use conclusions derived from data at one level of 

spatial resolution to units at another resolution (primarily individuals).  A possible solution to the 

contingency tables type problem is described in King (1997). 

 Clark and Avery (1976) looked at correlations derived from data collected from 1596 cen-

sus tracts, and correlations from a survey of households, both from the Los Angeles area.  They 

found a systematic increase in the correlation coefficients (and systematic changes in other bivari-

ate statistics) as the number of aggregated units decreased, except for a slight decrease in the fifth 

level of aggregation from the value at the fourth level.  They also conclude that their results do 

not agree with a hypothesis by Blalock (1964) that changes in the slope coefficient are explained 

by the reduction in variation of the independent or dependent variable, but instead could be re-

lated directly to how covariation changes with aggregation, and independently on the spatial auto-

correlation of the micro- and macrolevel data. 

 Openshaw and Taylor (1979) are credited with introducing the term Modifiable Area Unit 

Problem.  They use a dataset of percentage voters for Republicans in the 1968 congressional elec-

tions as a dependent variable and the percentage of population over sixty as recorded in the 1970 

US census over the 99 counties of Iowa to examine the effect of the MAUP on bivariate correla-

tion coefficients.  Ten thousand aggregations are performed at each of twelve different spatial 

scales, ranging from six to 72 areal units, and the correlation coefficients are computed.  These 

aggregations are performed with two separate algorithms, one that requires spatial contiguity and 

one that does not.  As illustrated by their Table 5.2, they find that the range of correlation coeffi-

cients becomes broader as the number of zones decreases, to the point where all possible values 
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for the coefficient are computed for the six and twelve zone groups, and even for the 48 zones in 

the non-contiguous aggregations the range is from -0.967 to 0.995.  No relation is found between 

the correlation coefficient and the relative loss of variation (original - aggregate variance)/(original 

variance) of the independent variable, though there is a systematic trend in of the loss of variation 

with scale.  They also show that the interaction between spatial autocorrelation and the contigu-

ous zoning procedure directly affects the resulting statistics. 

 Fotheringham and Wong (1991) present the results of an analysis of the effects of aggre-

gation on linear regression and logit models constructed from an 871 block group census dataset 

for the Buffalo Metropolitan Area.  The models have four independent and one dependent vari-

ables, and all variables are proportions in which the numerator and denominator are aggregated 

separately and divided after aggregation.  This may have affected the results because each number  

is the combination of two others, both of which are likely affected differently by the MAUP.  A 

systematic variation of the parameters for both models with scale is found, with some becoming 

more negative and others more positive as the scale (i.e. the number of zones) decreases.  To one 

degree or another, all show an increase in variation of values (and the standard errors of the pa-

rameters) with the decrease in scale.  In an attempt to link the changes to spatial autocorrelation, 

the variation of the Moran Coefficient of the variables with aggregation is examined.  Four of the 

five have curves that are approximately normal in shape, with the highest values in the intermedi-

ate levels of aggregation.  This differs significantly from my results as shown in Figure 4.2 and in 

Reynolds and Amrhein (1998a), and may be due to the nature of the proportion variable that con-

tains an implicit interaction between the spatial properties of two variables that are summed dur-

ing aggregation.  The coefficient of determination R2 is found to increase significantly with the 

decrease in scale, which again differs from my results (Reynolds and Amrhein, 1996).  Overall, 

Fotheringham and Wong are pessimistic about ever being able to deal with the MAUP in multi-

variate analysis.  Again, my preliminary results indicate that this pessimism is probably unfounded. 

2.3.  Theoretical Work 

 The theoretical side of the research is represented in this review by three papers.  Steel and 

Holt (1996) present a list of “rules” for random aggregation as a summary of their results, based 
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on the assumption that the groups are formed at random and that there is no association between 

the variate values and group membership.  They are listed as follows. 

(1) The expectations of weighted group-levels statistics are not affected by aggrega-
tion.  Thus any observed change, as we change boundaries or scale, is caused by 
random variation. 

(2) The variance of weighted group-levels statistics is determined mainly by the number 
of groups in the analysis.  If the number of groups is small, this variation will be 
high and the likely range will be so large that in many cases useful inferences will 
not be possible. 

(3) Valid confidence intervals and hypothesis tests can be obtained by means of 
weighted group-level statistics.  Even if the unit-level distribution is nonnormal, the 
analysis of weighted group-level statistics can proceed with procedures associated 
with the normal distribution, provided that the sample size within groups is not very 
small. 

(4) Unweighted statistics have the same expectation as their weighted counterparts, but 
larger variances.  Unless the variation in group population sizes is small, standard 
confidence intervals will have less than the required coverage. 

 
 Holt et al. (1996) propose statistical models whose purpose is to explain the aggregation 

effect in populations composed of geographic groups.  They conclude that the aggregation effects 

depend upon the sample sizes upon which the area means are based, the number of areas used in 

the analysis, and the strength of intra-area homogeneity on both variances and covariances for the 

variables of interest.  Auxiliary variables are introduced that explain much of the intra-area homo-

geneity, which leads to a decomposition of the aggregation bias into two components, one attrib-

uted to a set of grouping variables and the other to a residual source of aggregation bias condi-

tional on the grouping variables.  With some information about the individual level covariance ma-

trix of the grouping variables, it is believed that an adjustment can be made to eliminate the first 

component of the aggregation bias. 

 Steel, Holt, and Tranmer (1996) use the same model as Holt et al. (1996), but present a 

strategy for identifying adjustment variables for which an estimate of the unit-level covariance ma-

trix is available and that account for group effects.  First, one must identify a set of variables that 

covers the same subject area as the variables of interest, but for which both area level and unit 

level data are available from the past, such as previous census data.  Variables (such as housing 

variables in their example) that are known to be strongly associated with areal differences can be 

added to this set, so long as estimates of both of the area and unit level covariance matrices are 
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available.  A Canonical Grouping Variable analysis can then be carried out to identify the variables 

that load most strongly onto the most important CGVs.  Finally, a set of adjustment variables 

from the CGV analysis that is available within the current dataset and for which the unit level co-

variance matrix is available needs to be identified.  These variables can then be used to adjust the 

aggregate analysis for the variables of interest. 

 This brief survey of the extensive literature, as well as the more comprehensive surveys by 

Dudley (1991) and Openshaw and Taylor (1981), indicate that little use has been made of numeri-

cal simulations in the study of the MAUP, primarily due to the computationally intensive nature of 

the simulations.  The dataset generator and aggregation models described in Chapter 3 are a first 

step towards rectifying this deficiency. 
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3. Technical Details 

 This chapter describes the spatial dataset generator, the aggregation model, and the output 

diagrams in detail.  It replaces technical descriptions that were present to varying degrees in the 

three papers that form the next three chapters. 

3.1.  The Spatial Dataset Generator 

3.1.1.  Introduction 

 The need for a systematic study of the effects of the MAUP on summary statistics is clear.  

The literature, some of which is discussed in the previous chapter, contains many case studies of 

the effects of aggregation on various statistics using a single dataset for each study.  Each set 

comes with its own connectivity matrix and the variables have parameter values that are totally 

out of the control of the researcher.  A researcher reviewing the literature is likely to wonder if 

the results found from dataset X will be replicatable for dataset Y, even though the initial correla-

tions (for example) of the variables are completely different.  Furthermore, many papers, such as 

Clark and Avery (1976), discuss the possible effects of spatial autocorrelation on their results in 

passing, but since they have no control over it, little more than speculation can be stated.  To 

date, there has been no attempt to systematically vary the dataset parameters in order to test their 

effects on the aggregated statistics, and it is this deficiency that my research is redressing. 

 The method of generating synthetic spatial datasets discussed below is chosen because it 

allows the user to create a set of variables with specific levels of spatial autocorrelation (as meas-

ured by the Moran Coefficient) and Pearson correlations exactly and directly, as opposed to other 

methods that take a set of existing values and rearranges them.  Control over the spatial autocor-

relation of the variables is a requirement for my research, as it plays an important role in the effect 

of spatial aggregation on statistics1, while control over Pearson correlations was required for the 

bivariate and multivariate experiments.  Other methods of generating spatial data, such as the 

turning band method (see for example Bras and Rodriguez-Iturbe, 1985), work with only one 

variable at a time and make the data fit to a particular type of variogram (Journel and Huijbregts, 

                                                
1 A highly spatially autocorrelated variable will tend to suffer less from aggregation than one that is randomly or 
negatively autocorrelated because the observations that are aggregated tend to be similar to one another, hence less 
information (i.e. variability) is lost.  Section 6.4 discusses this in more detail. 
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1978, p. 12), but this is not satisfactory because it is advantageous for this research to deal with a 

single number rather than a graph when attempting to describe spatial organization and link it to 

the behaviour of statistics under aggregation, and it is not intuitive how to link a variogram to a 

specific level of spatial autocorrelation.  Using one of these methods also works on only one vari-

able at a time, making the specification of correlations between them difficult. 

 The Moran Coefficient (MC) is a convenient tool for measuring spatial autocorrelation in 

discretized surfaces, and for the purposes of this research it is also convenient for generating vari-

ables with specific levels of autocorrelation.  It is, however, a first-order spatial statistic, since it 

only deals with immediate neighbours to a cell, and this, among other things, means that it is not 

unique.  That is, many different spatial arrangements of a set of numbers can produce similar or 

equal values of the MC.  The data generation algorithm discussed below unfortunately lacks the 

ability to select a desired type of spatial arrangement (or even a specific one).  This poses a minor 

problem, as the research shows that the arrangement of the values, especially for higher levels of 

spatial autocorrelation, affects the behaviour of the MC and the various bivariate statistics and in-

terferes with the ability to draw highly general conclusions about their behaviour under aggrega-

tion.  As the conclusions drawn are no less valid for this lack of control, a more systematic at-

tempt to study the effects of spatial arrangement on the behaviour of moderately to strongly auto-

correlated variables under aggregation can be postponed as a topic for future research.  Since the 

generator is capable of producing a variety of spatial arrangements, it may be possible to modify it 

in the future to control just which arrangement it produces.  This weakness does, unfortunately, 

make the dataset generator unhelpful in efforts to simulate real-world datasets, since it is very of-

ten the arrangement of the values that is as much of interest as the values themselves. 

 Each synthetic variable created is a linear combination of eigenfunctions of the connec-

tivity matrix, making control of the resulting frequency distribution not possible with the current 

algorithm.  The distributions are mound-shaped and unimodal, but not necessarily normal (see 

Figure 4.1 for examples).  Certain combinations of MC and Pearson correlation are also found to 

be incompatible, such as two variables with widely differing MCs but a high level of correlation.  

This is reasonable because if the two variables were highly correlated then one would expect their 

spatial arrangements to be similar, something which is not possible with widely differing MCs.  

The requirement that the covariance matrix be positive definite, which it must be by definition, 
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makes it difficult to create a large number of combinations of MCs and negative correlations.  Fi-

nally, although it is theoretically possible to create spatial datasets of any size, the effort required 

to compute and decompose MCSM (defined below) increases extremely rapidly with size. These 

drawbacks and restrictions aside, the spatial dataset generator has proven to be a useful tool for 

this preliminary empirical research into the effects of aggregation on statistics. 

3.1.2.  Some Symbols Used in the Derivation 

The derivation of the method used to generated geo-referenced data uses the following symbols: 

n = number of zones in a geo-referenced dataset 

p = number of variables in a geo-referenced dataset 

M = I-11T/n is a projection matrix commonly found in statistics and is used for the matrix equiva-

lent of sum of squares of deviations from the mean. 

C = the binary spatial connectivity matrix of the region, where cij=1 if region i is next to region j, 

otherwise cij=0.  Most of the experiments are performed using an irregular ten-sided convex 

polygon illustrated in Figures 4.3 and 6.1 that is divided into 400 random Voronoi polygons.  

Some experiments in Chapter 4 are performed on a square region of dimension 20. 

C
1 1

1 C1
CS =

T

T , the scaled connectivity matrix, used in computing the Moran Coefficient 

ΣΣ1 = the covariance matrix of the intermediate variables V 

ΣΣ2 = the desired covariance matrix of the final variables X 

V = matrix of intermediate variables vi 

A = scaling matrix 

X = matrix of variables with desired properties xi; X=VA. 

3.1.3.  The Dataset Generator 

 Their aspatial nature makes setting means, variances, covariances, and correlations of 

variables to prespecified values a relatively simple task, as follows.  Suppose a set of p variables 

V, each with n observations, is postmultiplied by a p×p matrix A to form X = VA.  It is easy to 

show that the covariance matrix of X is ΣΣ2 = ATΣΣ1A.  To solve for A, define ΣΣ1 = BTB and ΣΣ2 = 

DTD, i.e. find the Cholesky decompositions of the covariance matrices.  It quickly follows that A 
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= B-1D.  Changing a variable’s mean requires nothing more than adding (µ2-µ1) to each observa-

tion, where µ1 is the current mean and µ2 is the required mean.  To change a single variable’s 

variance, each observation must be multiplied by σ2/σ1, where σ1 is the current standard deviation 

and σ2 the desired one. 

 Unfortunately, the Moran Coefficient is not as readily bent to our will.  Written in matrix 

notation, its formula is MC
T

T
( )x

x MC Mx

x Mx
S= .  There is no simple general way to represent the 

MC of a variable that is a linear combination of two or more other variables as a function of the 

MCs of these variables.  Suppose, however, that we compute the eigensystem of MCSM = EΛΛET, 

where E is the matrix of eigenvectors and ΛΛ is a matrix with the diagonal elements equal to the 

eigenvalues and the rest zero.  Hence we can rewrite the formula for the Moran Coefficient: 

MC
T T

T
( )x

x E E x
x Mx

=
Λ

 (Tiefelsdorf and Boots, 1995; Griffith, 1996).  Let x be one of the eigenvec-

tors ei.  By definition, the eigenvectors are all orthonormal, so that ei
TEΛΛETei reduces to λi and 

ei
TMei reduces to one.  Hence, the Moran Coefficient of an eigenvector of MCSM is just its cor-

responding eigenvalue.  Using similar arguments, it can be shown that the MC of a linear combi-

nation of eigenvectors y = aei + bej + cek + ... is MC
a b c

a b c
i j k

( )y =
+ + +

+ + +

2 2 2

2 2 2

λ λ λ L

L
.  Thus, the 

key to creating variables with specified Moran Coefficients lies in selecting appropriate linear 

combinations of the eigenvectors of MCSM. 

3.1.4.  Worked Example 

 The detailed description of the method below includes a worked example for the set of re-

gions illustrated in the diagram on the next page.  The desired values of statistics are: 

 
Variable Mean Variance Moran Coef Correlations 

1 20 6 0.4 1.0 -0.6 0.4 -0.4 -0.8 
2 20 6 0.2 -0.6 1.0 0.0 0.8 0.6 
3 20 6 -0.2 0.4 0.0 1.0 -0.2 0.2 
4 20 6 0.0 -0.4 0.8 -0.2 1.0 0.3 
5 20 6 0.13 -0.8 0.6 0.2 0.3 1.0 
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The diagram of the region (a random Voronoi tessellation of Metro Toronto) is below. 
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1. Compute the eigensystem of MCSM. 

Eigenvalues 
λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 

-0.5263 -0.5263 -0.4649 -0.3942 -0.1166 0.0000 0.0540 0.0770 0.3796 0.5177 
 
Eigenvectors 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 
-0.3271 0.4228 -0.1569 -0.4261 0.0060 -0.3162 0.0253 0.4405 -0.1371 0.4411 
-0.1319 -0.2147 -0.2663 0.1397 -0.5951 -0.3162 -0.2390 0.3868 0.0501 -0.4274 
0.1319 0.2147 0.4576 0.3879 -0.4777 -0.3162 0.1249 -0.1477 0.2024 0.4125 

-0.5909 -0.0066 -0.2787 0.0991 0.1440 -0.3162 -0.1274 -0.5740 0.3109 0.0133 
0.0000 0.0000 0.6121 -0.3530 0.2670 -0.3162 -0.2223 0.1272 0.3747 -0.3513 

-0.1319 -0.2147 0.1923 0.5045 0.4133 -0.3162 -0.2474 0.1864 -0.5183 0.0983 
0.3957 0.6441 -0.2047 0.0708 0.0851 -0.3162 -0.0564 -0.2378 -0.2468 -0.3921 
0.3271 -0.4228 -0.0411 -0.4733 -0.1860 -0.3162 -0.2494 -0.3720 -0.3082 0.2418 

-0.1319 -0.2147 0.0802 -0.0959 0.0073 -0.3162 0.8442 -0.0478 -0.2096 -0.2488 
0.4590 -0.2081 -0.3946 0.1463 0.3360 -0.3162 0.1474 0.2384 0.4819 0.2126 

 

2. One can create the covariance matrix ΣΣ1 by placing the variance of e2 on the diagonal of a p×p 
matrix, where p is the number of variables.  This can be done because the eigenvectors are all 
uncorrelated, as well as orthonormal.  We must do this step because we need to compute the 
scaling matrix A so that the needed values of the MCs can be calculated in Step 4. 
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Diagonal of ΣΣ1 0.1000 0.1000 0.1000 0.1000 0.1000 
 

3. Next one can create the scaling matrix A = B-1D, where B and D are the Cholesky decomposi-
tions of ΣΣ1 and ΣΣ2 respectively. 

7.746 -4.6476 3.0984 -3.0984 -6.1968 
0 6.1968 2.3238 5.4222 1.1619 
0 0 6.7082 -2.2361 4.2485 
0 0 0 4 0.5000 
0 0 0 0 1.3964 

 

4. Compute the MCs that each variable vi must have in order for the equivalent xi to have the de-
sired MC.  This must be done because multiplying VA will change the MCs for all but the first 
variable.  The procedure is as follows.  Recalling that X and A are composed of p vectors of 

length n, write ( ) ( )X VA x x x x v v , v , v A1 2 3 4 1 2 3 4= ⇒ =, ,, , .  Using the upper-triangular form 

of A to simplify, we get 

x v

x v v

x v v v

x v v v v

1 1
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4 1 2 3 4

=
= +
= + +
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. 

Since the vj are eigenvectors, the MCs of the xj are, using the relation previously defined, 

( ) ( )
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where Mj is the Moran Coefficient for variable j, and λj is the MC which vj must have so that xj 
will have the MC that is desired.  Solving for λj gives: 

( )[ ]
( ) ( )[ ]
( ) ( )[ ]

λ
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λ λ
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As can be seen, the required MC for variable j depends on the values of the MCs of the previous 
variables.  If a value exceeds the bounds λ1 ≤ MC ≤ λn, it means that the desired MC is not attain-
able with the current configuration of correlations and MCs. 

Variable 1 2 3 4 5 
Required MC 0.4000 0.0875 -0.3625 -0.2875 -0.5263 

5. Randomly select the eigenvalues λ1i and λ2i that bracket each of the required MCs.  Select the 
value of b from a uniform random distribution and compute the required value of a using the 

formula a
MC

MC
b2 2

1

2=
−

−








λ
λ

 (hence the need for the MC to be bracketed by the eigenvalues). 

 Lower 
eigenvalue 

Upper 
Eigenvalue 

  

Required MC Index Value Index Value a b 
0.4000 7 0.0540 10 0.5177 0.2968 0.5088 
0.0870 3 -0.4649 9 0.3796 0.7037 0.9676 
-0.3620 2 -0.5263 5 -0.1166 0.7974 0.6509 
-0.2870 4 -0.3942 8 0.0770 1.5589 0.8435 
-0.5260 1 -0.5263 1 -0.5263 -1.0000 0.8027 

6. Create the variables vi using vi = aeli + beui, where eli is the eigenvector of the lower eigenvalue 
and eui is that of the upper eigenvalue.  Scale the vi so that their variances match the variance of 
e2. 

Zone v1 v2 v3 v4 v5 
1  0.3938 -0.2032 0.3313 -0.1651 -0.3271 
2 -0.4896 -0.1161 -0.5427 0.3070 -0.1319 
3 0.4192 0.4328 -0.1357 0.2708 0.1319 
4 -0.0527 0.0875 0.0859 -0.1860 -0.5909 
5 -0.4154 0.6631 0.1689 -0.2499 0.0000 
6 -0.0397 -0.3061 0.0950 0.5324 -0.1319 
7 -0.3672 -0.3200 0.5528 -0.0509 0.3957 
8 0.0832 -0.2734 -0.4451 -0.5933 0.3271 
9 0.2104 -0.1223 -0.1617 -0.1071 -0.1319 
10 0.2579 0.1577 0.0513 0.2422 0.4590 

7. Compute X = VA and shift the values of the xj so that their means equal the desired means.  
This is done by adding the difference between the desired mean and the current mean to each 
observation of xj. 
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Zone x1 x2 x3 x4 x5 
1 23.0506 16.9106 22.9705 16.2769 18.1917 
2 16.2078 21.5560 14.5732 23.3288 20.5627 
3 23.2474 20.7334 21.3941 22.4346 17.6478 
4 19.5917 20.7871 20.6165 19.7014 19.8752 
5 16.7820 26.0396 21.3864 23.5052 23.9373 
6 19.6924 18.2880 19.8033 20.3804 20.3762 
7 17.1560 19.7235 21.8268 17.9628 24.7789 
8 20.6446 17.9192 16.6368 16.8820 17.4359 
9 21.6296 18.2641 19.2829 18.6180 17.6295 

10 21.9978 19.7785 21.5095 20.9099 19.5649 
 

3.2.  The Aggregation Model 

 Because nearly all spatial aggregations are performed by aggregating a number of con-

tiguous spatial units into one unit, the aggregation program does the same.  An aggregation is ini-

tiated by the random selection of M seed regions from the N regions of the spatial dataset, which 

are copied into an array of “just aggregated” regions.  In each pass of the routine, the neighbours 

of all of the recently aggregated regions are examined.  Any neighbour that borders only one of 

the expanding cells automatically becomes a member of the new cell, while any neighbour that 

borders more than one cell is assigned to that cell currently having the fewest regions, in an at-

tempt to keep the number of regions per cell as equal as possible.  In either case, the region is 

added to the “just aggregated” region list for the next pass.  Aggregation passes continue until no 

more free regions remain.  The assignment process for region j consists of setting element j of an 

index array to the identifier of the seed region around which the cell is built.  The new connec-

tivity matrix is built by looking at the neighbours of the regions within each cell.  The cell IDs of 

those neighbours that are outside the cell are added to the new neighbours list.  The new cells are 

then renumbered, the cell averages are computed, and the various statistics are computed using 

these average values, and then are stored. 

 One “run” of the model consists of a set of eight independent aggregations, one to each of 

40%, 35%, ..., 10% of the original number of cells.  One “experiment” consists of 1000 runs per-

formed on a given dataset.  The 1000 values of each statistic for each level of aggregation are 

processed to produce the mean, standard deviation, maximum and minimum values that are used 
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to plot the summary diagrams (see below).  Each distribution is also tested for normality using 

both the Kolmogorov-Smirnov and Shapiro-Wilk test statistics. 

3.3.  Interpretation of the Diagrams 

 Consider the sample diagram below, which is a replica of Figure 4.2a.  All figures consist 

of sets of eight lines, where each set is based on the results for a particular variable, or in the case 

of the bivariate and multivariate experiments, a pair of variables.  Each line in a set represents a 

distribution of statistic values for a given aggregation level as indicated in the legend at the bot-

tom of the figure.  Each line is marked with the extremes of the distribution (a symbol keyed to 

the level of aggregation), the mean (a heavy dot), and the mean plus and minus one standard de-

viation (small horizontal lines), included to give an idea of the shape of the distribution.  The stan-

dard deviation is chosen instead of the interquartile range that is used in the more standard box 

plots because it requires less effort to compute, it encloses more values, and the diagrams are also 

often so dense that a box plot would make them even harder to read. 
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 Each set of lines is labeled according to the nature of the experiment, either with the 

Moran Coefficient(s) of the variable(s), or initial correlation of the variables in some of the bivari-

ate experiments.  This format is chosen because it allows a lot of information to be displayed 

compactly yet legibly, an important feature given the very large volumes of numbers the model 

produces.  It would not be feasible to use three-dimensional plots, as it would be difficult to plot 

all of this information legibly, especially for comparing results over different levels of aggregation. 
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