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4. The Effect of Aggregation On Univariate Statistics1 

4.1. Summary 

 The resistance of the Modifiable Area Unit Problem to analytical solution requires that it 

be investigated by numerical and empirical studies that have the potential to lay the foundations 

for analytical approaches.  The use of synthetic spatial datasets, whose spatial autocorrelation, 

mean, and variance of individual variables, and Pearson correlation between variables, can be con-

trolled greatly enhances the ability of the analyst to study the MAUP in this manner.  This chapter 

explores the effects of spatial aggregation on the variance and three univariate spatial autocorrela-

tion statistics using a synthetic 400-region dataset.  The relationship between the relative change 

in variance and a modified version of the G statistic that was first proposed by Amrhein and Rey-

nolds (1996, 1997) is explored in more detail.  These results compare favourably with results gen-

erated from the Lancashire dataset of Amrhein and Reynolds (1996). 

4.2. Introduction 

 The Modifiable Area Unit Problem (MAUP) has been the focus of research interest for 

many years, with the current resurgence in interest being initiated by Openshaw and Taylor (1979) 

and fueled by the rapidly increasing computing power available to analysts.  It is well known that 

the application of statistical results derived from one level of spatial resolution to a higher resolu-

tion (such as census tract data being used to predict individual household information) can result 

in serious errors; this all too common error has been named the ecological fallacy. An ancillary 

effect of the enhanced computing power is the proliferation of Geographical Information Systems 

(GIS) and other spatial analysis tools.  As the MAUP has been either ignored or written off as in-

tractable in many research results, it can be expected to get short shrift by users of this software 

who are unaware of the subtleties of spatial data analysis.  The importance of gaining an under-

standing of the MAUP and how it can be taken into account in GIS software to reduce the num-

bers of flawed analyses and their possibly expensive repercussions cannot be understated. 

                                                

1 This is a modified version of the paper Reynolds and Amrhein (1998):  Using a spatial dataset generator in an 
empricial analysis of aggregation effects on univariate statistics.  Geog. and Env. Modelling, 1(2), 199-219. 
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 Theoretical work, such as that by Arbia (1989), has shown that an analytical solution is 

possible, but under restrictive conditions that would seldom be found in real life situations.  As a 

result, research into the MAUP has been primarily empirical, focusing on the effects of aggrega-

tion on various statistics computed from a specific dataset.  For example, Openshaw and Taylor 

(1979) examine correlation coefficients using an Iowa electoral dataset, Fotheringham and Wong 

(1991) study multiple regression parameters using Buffalo census data, Amrhein and Reynolds 

(1996), one of the papers in the special issue of Geographical Systems that focuses on the 

MAUP, and Amrhein and Reynolds (1997) study the effects of aggregation on univariate statistics 

and make a tentative link between a spatial statistic and the relative change in variance.  Recogni-

tion of spatial patterns is a fundamental requirement for landscape ecology, and various spatial 

autocorrelation statistics, such as the Moran Coefficient, are often employed as a tool for this task 

(Jelinski and Wu, 1996; Qi and Wu, 1996); hence it is important to know how spatial statistics are 

affected by aggregation as well. 

 The use of synthetic spatial datasets overcomes the difficulties inherent in publicly avail-

able sets, with census data being the prime example.  Possible errors in the data notwithstanding, 

the greatest frustration for researchers into the MAUP is that one has no control over the values 

of spatial autocorrelation, means, variances, or Pearson correlations between variables; one must 

work with the data at hand.  Amrhein (1995) is the first to use synthetic datasets in the study of 

the MAUP by locating points randomly within a unit square, assigning them random values, im-

posing various sized square grids, and aggregating the points within each square.  This chapter 

extends this approach by employing more sophisticated synthetic datasets to explore the effects of 

spatial aggregation on the weighted variance and on three commonly-used spatial autocorrelation 

statistics, the Moran Coefficient, the Geary Ratio, and the Getis (G) statistic.  The following sec-

tions discuss the method of analysis, the results, and the conclusions. 

4.3. Method 

 The dataset generator, aggregation algorithm, and method for interpretation of the dia-

grams are described in detail in Chapter 3.  The frequency distributions of values tend to be 

mound-shaped and unimodal, but are not usually normal (see Figure 4.1 for examples).  The spa-
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tial connectivity matrix is created from either a rectangular grid or a tessellation of randomly-

generated Voronoi polygons, depending on the experiment. 

 Three spatial datasets of 400 Voronoi polygons and 8 variables are created using the data-

set generator.  In order to test the effect of spatial autocorrelation on spatial aggregation, the first 

two sets are created with variables that are mutually uncorrelated, have variances of 6.0 and 

means of 20.0, and have Moran Coefficients of -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.  The 

non-zero mean is required so that all values are greater than zero in order for the Getis statistic to 

be valid, as well as to match most real datasets.  To see if the variance of the variable affects the 

aggregated values, another set is created with variables that are mutually uncorrelated and have 

means of 20.0, but have the same Moran Coefficient values of 0.0 and variances of 5.0, 10.0, 

20.0, 30.0, 40.0, 50.0, 60.0, and 70.0.  The random aggregation model of Amrhein and Reynolds 

(1996, 1997) and Reynolds and Amrhein (1998)2 was run 1000 times on each dataset and the 

relative change in variance, Moran Coefficient, Geary Ratio, and G statistic were saved for each 

of 8 levels of aggregation.  Also saved were the following non-standard statistics: 
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and m is the number of aggregate cells.  MC1 and GR1 are just modified ver-

sions of the Moran Coefficient and Geary Ratio, while G is the G statistic (Getis and Ord, 1992; 

Ord and Getis, 1995) modified by dividing by the aggregate unweighted variance.  These statistics 

are computed as part of the testing of possible correlation between equation (3) and the relative 

change in variance in Section 4.4.  Equation (3) is slightly different from the modified G used in 

Amrhein and Reynolds (1996, 1997), who divided by the sum of squares of deviations, rather than 

                                                

2 Described in detail in Chapter 3. 
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the variance.  To test the effectiveness of the new dataset generator at simulating a real dataset, 

the Lancashire dataset of Amrhein and Reynolds (1996) and a synthetic replication were run 

through the aggregation model and the results are compared.  It is impractical to attempt to repli-

cate large datasets such as the Toronto set of Amrhein and Reynolds (1997), since the time and 

effort required to compute the eigensystem of a matrix with 5370 rows and columns is enormous. 

4.4. Results 

4.4.1.  The effects of aggregation on the variance 

 Figure 4.2a illustrates the aggregation behaviour of the relative change in variance (RCV), 
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aggregated variance that is weighted by the number of regions ni in the M aggregated cells.  A 

value of RCV near one (as in the first group of lines in Figure 4.2a) means that the aggregated 

weighted variance is much closer to zero than the original variance, while a value near zero (as in 

the last group of lines in Figure 4.2a) means that the new variance is very similar to the original.  

The diagrams are explained in detail in Section 3.3. 

 It can be shown that the variance of a spatially located variable can be partitioned into the 

sum of variances within various sub-regions and the variance of the average values of all the 

subregions (see Section 5.3 and Moellering and Tobler, 1973).  The process of aggregation re-

moves the former, so the more spatially homogeneous (i.e. positively autocorrelated) a variable is, 

the smaller the variance within each cell will be (on the average) and hence the less variance is 

lost.  As the number of aggregate cells decreases (i.e. fewer, larger regions), the loss in variance 

obviously increases, since a greater number of values are being lost.  Both of these patterns are 

well demonstrated in Figure 4.2a.  As the number of aggregate cells decreases, the number of re-

gions per cell increases on average, since the aggregation algorithm attempts to have similar num-

bers of regions per cell, but does not strictly enforce this ideal. When significantly positively auto-

correlated variables are aggregated, increasing the number of regions per cell increases the likeli-

hood that more widely differing values will be included in each cell, so one would expect the vari-

ability of possible aggregate variance values to increase with a decrease in the numbers of cells.  

With negatively or near-randomly autocorrelated variables, however, the tendency towards the 
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juxtaposition of widely differing values means that as the number of regions per cell increases, the 

opportunity for variation in the aggregate variance values will tend to remain the same or de-

crease.  Both of these patterns are demonstrated in Figure 4.2a.  When variables of the same MC 

but different variances were aggregated, it was found that the variance of the original variable had 

no discernible impact upon the distributions of the RCV (not shown).  Only the spatial organiza-

tion of the variable plays a major role in the new variance. 

4.4.2.  The effects of aggregation on the Moran Coefficient 

 Explanation for the changes in spatial autocorrelation, as explained by the aggregated 

Moran Coefficient, is more difficult.  Figure 4.2b was created by running the model on the same 

dataset as Figure 4.2a.  Unfortunately, the nice clear pattern seen in the figure for variances is not 

present here.  There is an upward trend in the ranges as the MC increases for the first three and 

last three variables, but the variables whose MCs are 0.2 and 0.4 behave very similarly to the one 

with MC of -0.2.  Clearly the behaviour of the MC is much more complex than the variance and 

further exploration is required. 

 Figures 4.3a to 4.3d illustrate 16 variables, 8 on the irregular tessellation used in the other 

experiments and 8 on a 20×20 square grid, each of which has a MC of 0.8.  Each figure has four 

variables illustrated at the top and their estimated variograms (Cressie, 1993, p. 69) below.  The 

variograms are isotropic (i.e. a function of distance only, not of direction) and computed using the 

standard method of moments estimator ( )2
1 2
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= −∑ s s  (Cressie, 1993, p. 69), 

where h is the Euclidean distance between the points si=(xi, yi) and sj=(xj, yj) and Z(s) is the vari-

able value at point s.  Because the data locations are regions, their centroids are used for the val-

ues of s.  This formula states that the value of the variogram at a distance h (plotted as the x co-

ordinate of the diagram) is the sum of all the values of ( )Z( ) Z( )i j

2
s s−  where the Euclidean dis-

tance between si and sj is less than or equal to h divided by the number of pairs of points that meet 

this criterion.  The variogram “acts as a quantified summary of all the available [spatial] structural 

information, which is then channeled into the various procedures of resource and reserve evalua-

tion” (Journel and Huijbregts, 1978, p. 12). 
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 Figures 4.3a to 4.3d clearly show that variables with the same MC can have very different 

spatial structures, although the possibilities decrease as the MC approaches the maximum allowed 

by the spatial structure.  The location of the maximum of the variogram can be used as a crude 

approximation of the length scale of the spatial structure.  Variables with a short length scale, 

such as those in Figures 4.3a and 4.3b, also have variograms that oscillate about the asymptotic 

value.  The downward component of the oscillation occurs when the distances are great enough 

to reach from one cluster to another similar one, allowing more differences between similar values 

to be included in the sum, and the upward component occurs when the distances allow more dis-

similar pairs of values to be included in the sum. 

 Figures 4.4a and 4.4b illustrate the effect of the spatial arrangement on the aggregated MC 

and RCV respectively.  Each set of lines has a label that corresponds to the respective variable in 

Figures 4.3a to 4.3d, and the diagrams are divided into four sections to indicate in which figure 

each variable is located.  As expected, the behaviour of both of the statistics is related to the ar-

rangement of the values.  As long as the aggregate cells are, on average, of a similar or smaller 

size than the length scale of the variable, then similar values will tend to be aggregated and hence 

the variance will not be greatly affected.  With the aggregate cells having similar values to the 

unaggregated cells, similar values will still tend to be next to each other and so the spatial auto-

correlation will not be much affected either and in fact may even increase somewhat (Figure 4.4a, 

Variables 11 to 15).  As the number of cells decreases and size increases to reach and exceed the 

length scale, then more and more dissimilar values will be included within an aggregate cell and 

the loss in variance will be greater.  Increasing variability of the values within the aggregate cells 

makes it more likely that dissimilar values will be located next to each other in the aggregated re-

gion, hence lowering the spatial autocorrelation, sometimes dramatically, creating a strongly nega-

tively aggregated variable where it was strongly positive before.  A more detailed analysis of spa-

tial pattern’s effect on aggregation will be a topic for future research. 

4.4.3.  Frequency distributions 

 As it is of interest, and potentially useful, to learn about the frequency distributions of the 

aggregated statistics, the distribution of statistic values for each statistic at each level of aggrega-

tion is tested for normality using both the Kolmogorov-Smirnov (K-S) and Shapiro-Wilk tests.  In 
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order to see if having more points is beneficial, the tests are conducted cumulatively on the first 

100 runs, the first 200 runs, and so on until all 1000 points are included.  Tables 1a and 1b (at the 

end of the chapter) present a summary of the K-S test results for selected statistics, aggregation 

levels, and numbers of runs for variables with initial MCs of -0.4 and 1.0 respectively.  The sec-

ond column lists the critical value of the K-S test; if the computed statistic is less than it (for ex-

ample, the RCV for 180 cells at 100 runs is 0.0431 and the corresponding critical value is 0.1360) 

then the frequency distribution is normal.  All of the distributions are either normal or close to 

normal, including the ones not shown.  As a general rule, the distribution deviates more from a 

bell-shaped curve as the number of aggregate cells decreases.  As the number of runs increases, 

the K-S statistics indicate a trend towards a less normal distribution, but this is probably at least 

partly an artifact of the n-1/2 dependence of the critical value.  This sort of problem is common 

among simulation analyses in which one must decide the optimum number of experiments based 

on an increase in accuracy due to more runs versus a shrinking confidence interval.  For the most 

part, the values of the K-S statistic decrease slightly or remain about the same with increasing MC 

of the unaggregated variable, meaning that the values become more normally distributed.  Curi-

ously, the RCV of the 180 cell aggregation is a glaring exception to this observation; why this is 

so requires further investigation.  Tables 4.2a and 4.2b on page 31 present selected results for the 

Shapiro-Wilk tests for the same variables as above, and the values corroborate the conclusions 

drawn from the first two tables. 

4.5. Correlating the change in variance with a spatial statistic 

 Amrhein and Reynolds (1996, 1997) and Reynolds and Amrhein (1998) have indicated 

that a relationship could exist between the relative change in variance (RCV) and the aggregated 

G statistic, defined as G by Equation (3), which is the classic G statistic (Getis and Ord, 1992) 

modified by dividing it by the unweighted variance σ u
2 of the aggregated values.  The primary 

challenge is to prove that this relationship is not simply due to the presence of similar terms on 

both sides of the equation: the weighted variance in the numerator of the Relative Change in Vari-

ance (RCV) and the unweighted variance in the denominator of the modified G. 

 Figure 4.5a illustrates the RCV as a function of the aggregated variable MC1, defined by 

Equation (2), for the variable whose initial MC is -0.4, while Figure 4.5b illustrates that of RCV 
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and the aggregated regular MC.  Plots for the modified and regular Geary Ratio are very similar 

and so are not shown.  These plots and those of Figure 4.6 are created using the statistic values 

from every tenth model run, and each level of aggregation has its own symbol.  It is immediately 

obvious that the inclusion of the sum of squares of deviations term turns a fairly strong non-linear 

relationship into a very weak one.  Figure 4.5 and the equivalent Geary Ratio plots serve as a 

counterexample to the argument that the relationship between the modified G statistic and the 

RCV is caused by the inclusion of this term. 

 Figure 4.6a shows the relationship between the RCV and log10(G) for the variable with 

MC of -0.4, while 4.6b illustrates that between RCV and log10(modified G).  The logarithm is re-

quired for clarity because the G and modified G values occur over two orders of magnitude.  It is 

clear that inclusion of the aggregated variance (with its sum of squares of deviations) creates a 

very good non-linear relationship where there was none before.  Note that the initial MCs of -0.4 

are used in Figures 4.5 and 4.6 because they best illustrate the argument.  With a little work it can 

be shown that the Moran Coefficient  and modified G statistic can be written in terms of the 

Geary Ratio (for the former, see Griffith, 1987, p. 44), and it is this relationship, coupled with the 

evidence in Figure 4.5, that suggests that the relationship between the RCV and the modified G 

statistic is a real one, and not one created by the presence of similar terms on both sides of the 

equation. 

 With the above conclusion reached, the points for all levels of aggregation and the various 

MCs of the original variables were fitted, using least squares, to an equation of the form 

RCV = A*G + B*log10(G) +C*M +D*log10(M+α) + E, where G is the aggregated modified G 

statistic, M is the Moran Coefficient of the unaggregated variable, and α is a number large enough 

to ensure that the logarithm is defined.  In this case, α=0.5 since the lowest MC used is 

-0.4, but values in the 0.4 to 0.6 range produce fits with similar values of R2.  The original MC is 

included in this equation because of the obvious dependence of RCV on it that is displayed in Fig-

ure 4.1a.  Fits generated from various datasets with variables of varying MC consistently gener-

ated R-squared values in the 0.9 range and have very significant F-test results.  Unfortunately, ini-

tial attempts to exploit this relationship to predict the variance of an unaggregated variable have 

not been successful, and work on this continues. 
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4.6.  Comparison of synthetic data to a real dataset 

 The use of synthetic spatial datasets to systematically examine the MAUP is essential, as 

real datasets do not offer the flexibility of spatial and aspatial parameter control that can be de-

fined by an appropriate experimental design.  In any sort of empirical experiment, one must be 

able to identify any factors, such as the spatial autocorrelation and pattern, variance, and correla-

tion of the variables or the level of aggregation, that might have an impact on the results.  After 

these factors are identified, the experiments must be designed in such a way as to allow each fac-

tor to be systematically varied over its feasible or practical range in order to judge its influence on 

the outcome.  When a single dataset is used, such as in Openshaw and Taylor (1979) to study cor-

relations, or in Fotheringham and Wong (1991) to study multivariate statistics, the researcher is 

limited to whatever means, variances, correlations, MCs, and other properties that the variables 

have.  Conclusions that are drawn cannot be tested for the effects of a different MC or correlation 

coefficient, resulting in what is effectively one tree in the forest of the behaviour of the MAUP. 

 It is important, however, to see how well the behaviour of a real dataset is mimicked by 

that of a synthetic counterpart, i.e. a dataset created to have the same MCs, variances, correla-

tions, and means (so long as none of the synthetic variable values are negative).  A good corre-

spondence will increase confidence in the validity of applying conclusions about the MAUP based 

upon synthetic data to real world situations.  Two weaknesses of this dataset generator became 

apparent during the experimentation that led to this paper.  The first, an inability to control the 

frequency distribution of the values, often manifested itself in a need to shift the mean of a vari-

able so that the lowest value was zero, but was otherwise not of much consequence.  The second, 

an inability to control the spatial pattern of the values, poses a greater potential problem to dataset 

simulation, as the behaviour of the spatial characteristics like MC depends on the spatial arrange-

ment (section 4.5.2) as well as the level of spatial autocorrelation inherent in it. 

 To this end, we employ the Lancashire dataset previously used in Amrhein and Reynolds 

(1996).  Figure 4.7 compares the behaviour of the RCV of all eight variables in this dataset to a 

set of synthetic counterparts whose parameters match the originals.  Generally speaking, there is a 

good correspondence between the locations of the means of the distributions from the two data-

sets, though it can be seen that the values from the synthetic set generally occupy wider ranges.  

This difference may be caused at least in part by differences between the spatial arrangements of 



  29 

the original and synthetic variable values (such as in Figure 4.9), and needs further investigation.  

Figure 4.8 compares the behaviour under aggregation of the Moran Coefficients of the variables 

in the two datasets.  It can be seen that the last four variables of the sets behave similarly, while 

the first four have often dramatic differences, the greatest of which occurs with the first variable, 

MTDEP.  Figure 4.9 compares the spatial distributions of the original and synthetic values of this 

variable, with the distribution ranges divided up such that each encloses an equal number of the 

304 wards to facilitate visual comparison.  The dramatic differences between the two, which both 

have an MC of 0.36, are more than likely to be the cause of the differences in the behaviour under 

aggregation of their MCs, as is mentioned above. 

4.7. Conclusions 

 The preceding experiments have demonstrated some interesting properties of statistics that 

are computed from spatially aggregated data.  They were made possible by the creative control 

over the synthetic data provided by the new generator.  All statistics, even the complex spatial 

ones, fall within well-defined distributions that are normal or nearly so, and whose parameters 

(mean and standard deviation) are determined by the level of aggregation.  The RCV shows a 

strong dependence on the spatial autocorrelation of the original variable, as opposed to the spatial 

statistics like the MC and Geary Ratio whose dependence on the original spatial autocorrelation 

(as measured by the original MC) is unclear.  The spatial arrangement of the data, especially for 

high levels of MC, also plays an important role for both the aggregated MC and variance.  None 

of the statistics shows any discernible relationship with the variance of the unaggregated dataset, 

however, indicating that it is the spatial distribution of the values, rather than the values them-

selves, that largely determine the behaviour of the dataset under spatial aggregation.  The RCV is 

also found to be highly correlated with a non-linear function of both the original MC and the 

modified G statistic, having an R2 value of the order of 0.9.  It is argued that the strength of this 

relationship is not due to the presence of similar terms on both sides of the equation (weighted 

variance in the LHS and unweighted in the RHS) but is in fact genuine.  This represents a small 

step toward the ultimate goal of estimating the values of the various unaggregated statistics, but 

more work is required in order to effectively exploit this relationship.  Various attempts to use it 
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to predict the original variance of an aggregated dataset have been unsuccessful, and research on 

this problem continues. 

 The new spatial dataset generator provides more flexibility in the creation of datasets than 

does the old one.  The pair-swapping algorithm employed in the older generator does not allow 

for the creation of variables whose spatial patterns are representative of the entire range of possi-

ble patterns, and also only allows the first row of desired correlations to be computed.  Unfortu-

nately, it does not allow for control over the final spatial distribution of a variable, or the fre-

quency distribution of its values.  While this does not appear to seriously affect the ability of syn-

thetic datasets to mimic the aspatial aggregation properties of their univariate statistics, the behav-

iour of spatial statistics like the Moran Coefficient can be dramatically different between the true 

variable and its synthetic counterpart due to differences in the spatial arrangements.  It is clear 

that the dataset generator is still in need of some refinements. 

 Among the most interesting and potentially useful results include the fact that aggregate 

statistics, both spatial and non-spatial, form normal or near-normal sampling distributions whose 

bounds are relatively small compared to the range of possible values of the statistics.  This is a 

strong indication that the results of aggregation are not chaotic, but behave in a well-defined man-

ner.  The normality of the distributions is interesting because of the complexity of the processes 

involved, especially for the spatial statistics.  Since most statistical theory is built around assump-

tions of normally distributed data, a cynic would expect Murphy’s Law to act to make the distri-

butions something other than normal.  Exploration of this feature is another topic for future re-

search.  Programs to estimate the effect of the MAUP such as the ones used here have the poten-

tial to be incorporated into routines in GIS software packages once sufficiently sophisticated algo-

rithms, backed by a more thorough knowledge of the theory behind what is going on, become 

available. As this occurs, one of the most troublesome sources of error in the analysis of spatially 

referenced data may finally be rendered tractable to even the most inexperienced GIS users and 

the ultimate goal of being able to estimate the true statistical parameter values of a spatially ag-

gregated dataset may finally be achieved. 
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4.8.   Tables 

Table 4.1a:  Selected K-S Test Statistics:  Variable with Original MC of -0.4 

 Critical RCV Moran Coeff Geary Ratio Modified G 

RUNS K-S 180 40 180 40 180 40 180 40 

200 0.0962 0.0395 0.0807 0.0534 0.0508 0.0339 0.0405 0.0553 0.0673 
400 0.0680 0.0215 0.0920 0.0322 0.0471 0.0251 0.0372 0.0393 0.0624 
600 0.0555 0.0262 0.0770 0.0238 0.0446 0.0209 0.0305 0.0335 0.0624 
800 0.0481 0.0249 0.0797 0.0138 0.0368 0.019 0.0288 0.0262 0.0655 

1000 0.0430 0.0266 0.0719 0.0147 0.0375 0.0198 0.0246 0.0227 0.0728 

 

Table 4.1b:  Selected K-S Test Statistics:  Variable with Original MC of 1.0 

 Critical RCV Moran Coeff Geary Ratio Modified G 
RUNS K-S 180 40 180 40 180 40 180 40 

200 0.0962 0.0473 0.0363 0.0358 0.0324 0.0324 0.0453 0.0382 0.0426 
400 0.0680 0.0355 0.0313 0.0302 0.0196 0.0323 0.0431 0.0322 0.0347 
600 0.0555 0.0345 0.0263 0.0204 0.0211 0.0355 0.0329 0.0241 0.0399 
800 0.0481 0.0348 0.0350 0.0193 0.0182 0.0278 0.0341 0.0233 0.0410 
1000 0.0430 0.0304 0.0292 0.0175 0.0187 0.0261 0.0336 0.0226 0.0353 

 

Table 4.2a:  Selected Shapiro-Wilk Statistics:  Variable with Original MC of -0.4 

 RCV Moran Coeff Geary Ratio Modified G 
RUNS 180 40 180 40 180 40 180 40 

200 0.9824 0.9445 0.9838 0.9663 0.9720 0.9572 0.9557 0.9530 
400 0.9795 0.9115 0.9770 0.9673 0.9735 0.9518 0.9636 0.9447 
600 0.9772 0.9239 0.9781 0.9737 0.9685 0.9624 0.9662 0.9347 
800 0.9782 0.9275 0.9744 0.9768 0.9685 0.9662 0.9700 0.9349 
1000 0.9773 0.9295 0.9726 0.9754 0.9675 0.9664 0.9689 0.9137 

 

Table 4.2b:  Selected Shapiro-Wilk Statistics:  Variable with Original MC of 1.0 

 RCV Moran Coeff Geary Ratio Modified G 
RUNS 180 40 180 40 180 40 180 40 

200 0.9606 0.9658 0.9621 0.9754 0.9728 0.9623 0.9515 0.9662 
400 0.9644 0.9679 0.9669 0.9746 0.9683 0.9629 0.9614 0.9651 
600 0.9669 0.9707 0.9720 0.9756 0.9651 0.9669 0.9669 0.9648 
800 0.9644 0.9702 0.9723 0.9734 0.9670 0.9660 0.9701 0.9651 
1000 0.9640 0.9691 0.9746 0.9719 0.9680 0.9636 0.9697 0.9657 
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