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5. The Effect of Aggregation on Bivariate Statistics 

5.1. Summary 

 The synthetic spatial dataset generator described in Chapter 3 was used to seek a relation-

ship between the behaviour of aggregated bivariate statistics and the spatial autocorrelation of the 

variables.  It is found that a degree of dependence is visible, especially when their Moran Coeffi-

cients (MCs) are the same or when the initial correlation is zero.  When the two variables have 

different MCs, the use of spatial autocorrelation is insufficient to completely describe the behav-

iour of the statistics, especially that of the correlation and MC of regression residuals.  Correlation 

coefficients from a synthetic spatial dataset built on the Iowa connectivity matrix behave in a simi-

lar manner to those derived from the data used in Openshaw and Taylor (1979), helping to con-

firm the utility of the synthetic data generator as a tool for analysis of the MAUP.  A numerical 

measure of spatial pattern is recognized as a requirement for more precise measurement of the 

MAUP as it affects the more complex univariate, bivariate, and multivariate statistics. 

5.2. Introduction 

 The dependence of bivariate statistics, primarily correlation, on spatial resolution is what 

initially drew researchers’ attention to what would be called the Modifiable Area Unit Problem 

(MAUP) (for example, Gehlke and Biehl, 1934; Robinson, 1950).  Studies using specific datasets 

have appeared sporadically in the literature since then (e.g. Clark and Avery, 1976), but the 

daunting computational requirements for even the most basic study meant that systematic studies 

have been unfeasible until recently with the increasing availability of cheap, fast computers.  Fur-

thermore, studying bivariate statistics is complicated because they depend on the behaviour of two 

variables that are aggregated independently. 

 Openshaw and Taylor’s (1979) examination of the effects of spatial aggregation on corre-

lation coefficients has been widely recognized as the inspiration of an increasing body of research 

(see the 1996 special issue of Geographical Systems).  Reynolds and Amrhein (1998) and Chapter 

3 point out that the use of specific datasets greatly restricts the ability of researchers to study the 

Modifiable Area Unit Problem because the various spatial and aspatial parameters of the variables 

cannot be altered at will.  The synthetic spatial dataset generator and random aggregation model 

described in detail in Chapter 3 are employed here to extend the work of Reynolds and Amrhein 
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(1998) to the bivariate statistics of covariance, correlation, regression slope parameters, and the 

Moran Coefficient of the regression residuals (MCRR).  Results from the analyses will be com-

pared to results from Openshaw and Taylor (1979).  The third section describes the rationale and 

method behind the experiments, the fourth and fifth present the results of the first and second ex-

periments, the sixth section discusses the results, and the seventh presents conclusions of the 

chapter. 

5.3. Method 

 Reynolds and Amrhein (1998) clearly demonstrate that the relative change in variance, 

defined on page 23, is clearly affected by both spatial autocorrelation and arrangement of the 

unaggregated variable and the number of aggregate cells.  A similar formula cannot be used to 

express the change in covariance, unfortunately, because the covariance can be zero.  Similar to 

the variance, the unaggregated covariance can be written as the sum of the covariance between 

the aggregated cells and the sum of weighted covariances within each cell as follows: 
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mean, and Covi(X,Y) is the covariance of the variables X and Y within aggregate cell i.  The 

process of aggregation removes the weighted variances of variable X (and Y) within each aggre-

gate cell and it removes the weighted covariances between X and Y.  Unlike the variance, which 

is always positive, the covariance can be either positive or negative, so it is difficult to predict 

whether the net change for a given aggregation will be positive or negative.  Intuitively, knowing 

the behaviour of variance, one would expect that covariance would tend to decrease in absolute 

value with aggregation (except of course when it is initially zero) due to a decrease in the variabil-

ity of both variables, with this tendency becoming more likely as the initial correlation between the 

variables increases. 
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 Studying the behaviour of the change in correlation, defined by r
Cov(X, Y)

s  sxy
x y

= , where sj 

is the standard deviation of variable j, is complicated by the fact that the covariance and variances 

of X and Y are all independent, and so vary independently under aggregation (sx and sy will both 

decrease, but the covariance can either decrease or increase).  Openshaw and Taylor (1979) com-

pare the aggregated correlation to the relative change in variance of the dependent variable, 

which, although not incorrect, is not anywhere nearly enough to gain an understanding of how it 

varies either due to spatial properties of the variables or to aspatial properties, such as the original 

correlation between the variables.  Since the behaviour of the variance (and hence standard devia-

tion) is already known, the behaviour of the covariance needs to be examined along with that of 

the correlation.  To this end, the experiment is divided into two sections, the first in which both X 

and Y have the same level of spatial autocorrelation, as measured by the MC, and the second in 

which their MCs differ.  The behaviour of the linear regression slope parameter 

b Cov(X, Y) / sxy x
2=  is also of interest, as it only depends on two independent, yet mathemati-

cally similar, factors.  Finally, if the regression residuals are spatially autocorrelated, then the re-

quirement of independent residuals is violated and the validity of the linear regression analysis is 

compromised because the sampling distributions of the parameters, and hence the probabilities of 

Type I and Type II errors, are changed (Griffith, 1988, pp. 82-83).  Cliff and Ord (1981, p. 191) 

show that the least squares estimator of β has a variance that is higher when the residuals are spa-

tially autocorrelated, and Dutilleul (1993) and Clifford et al. (1989) note that spatial autocorrela-

tion in the variables requires a modified version of the t-test for the significance of the correlation 

coefficient.  It is therefore of interest to analyze the spatial behaviour of the residual under aggre-

gation to see if the process improves or worsens this problem. 

The spatial dataset generator described in Reynolds and Amrhein (1998) (and in more de-

tail in Chapter 3) allows the creation of datasets with variables that have specified means, vari-

ances, Moran Coefficients (MC) of spatial autocorrelation, and also of the matrix of Pearson cor-

relations between the variables.  The incompatibility of certain combinations of MC and correla-

tion and the requirement of positive definiteness of correlation matrices both act to hamper inves-

tigations of the behaviour of bivariate statistics, especially for negative correlations.  The datasets, 

generated on the irregular tessellation of 400 regions posited by Reynolds and Amrhein (1998) 
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(and Chapter 4), attempt to observe the widest possible range of combinations of MCs and corre-

lations.  The first experiment involves setting the MC of each of five variables to the same value 

(ranging between -0.4 and 1.0) and having the correlations between them set to values between -

0.8 and 0.8.  The second experiment requires that as many correlations as possible be fixed at a 

specific value while the MCs of the variables be varied within the limits imposed by the desired 

covariance matrix.  In both experiments, the variances of the variables are set to 6.0 and the 

means to 20.0 in order to have non-zero values to better simulate real data.  Each dataset is run 

through the random aggregation model of Reynolds and Amrhein (1998) (described in detail in 

Chapter 3) 1000 times, with the desired aggregated statistics computed and stored after each run, 

and the overall distributions of the statistics tested for normality using the Kolmogorov-Smirnov 

test. 

5.4. Results for fixed Moran Coefficients, varying correlations 

 Figures 5.1, 5.2, and 5.3 illustrate the changes in covariance, correlation, and the upper 

triangle of the regression slope parameters matrix, when both variables have the same MC and 

different correlations, for MCs of a) -0.4 and b) +0.8.  The lower triangle slopes behave in a simi-

lar manner and are not shown.  These figures are generated by running the model on a dataset 

with five variables, and hence with a possibility of ten different correlations.  Nine of the correla-

tions are labeled on the plots and range from -0.8 to 0.8; the tenth is set to a value that makes the 

covariance matrix positive definite.  Since this value is between -0.8 and 0.8, it is felt that includ-

ing its results would not be necessary for the analysis.  As explained in Chapter 3, each group of 

lines represents one statistic of interest, in this case a particular initial correlation, and each line in 

a group represents the range of values of the aggregated statistic for a particular level of aggrega-

tion.  The heavy dot represents the mean of the distribution, and the tic marks above and below it 

are one standard deviation away from it, to give an idea of the shape of the distribution.  As it 

turns out, nearly all of the frequency distributions of all of the statistics generated by these ex-

periments are normal, according to the Kolmogorov-Smirnov test, and those that are not too dif-

ferent from normal, so this will not be further discussed.  One of the features of all three figures is 

the symmetric behaviour of the statistics, which is not unexpected since greater organization is 

represented by values further away from zero in either direction. 
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Figure 5.1 illustrates a clear trend towards zero covariance as the number of aggregated 

cells decreases.  Table 5.1 illustrates these observations numerically, with the top row being the 

value of the MC of both variables, the next row being the original correlation, the third being the 

original covariance values, and the entries being the mean values from 1000 runs of the aggrega-

tion model.  Clearly the covariance tends to behave like the variance, at least when the MCs of X 

and Y are the same, even though the weighted sum of internal covariances from Equation (1) can 

be either positive or negative.  The change in the concavity of a line formed by the heavy dots, 

which are the means of the distributions in each group of lines, as the MC of the two variables 

becomes more positive is also worthy of note, as it mimics that of the variance as shown in Figure 

4.2.  The range of values increases with decreasing number of aggregate cells for highly autocor-

related variables, while the range decreases with decreasing number of cells for negatively corre-

lated variables, a pattern that shows up again in Figure 5.5a. 

 The table and figure show that more covariation is lost (in the sense that the covariance is 

brought closer to zero) when the variables are negatively autocorrelated (about 96% between 400 

regions and 40 cells) or weakly positively autocorrelated than when strongly autocorrelated 

(about 58%), and these losses are approximately the same for all levels of initial correlation.  

When X and Y are both strongly positively autocorrelated, the juxtaposition of similar values 

means that the spatial arrangement of aggregated values will be similar to that of the unaggre-

gated values, and thus the change in covariance will not likely be as great as it will be for less spa-

tially organized variables.  The covariance will tend to decrease (if initially non-zero) during ag-

gregation because the change in spatial arrangements of both variables is more likely to make their 

association more random than it is to make it more related.  When both variables are highly auto-

correlated, their covariance, like their individual variances, will tend to vary more as the number 

of aggregate cells decreases because it becomes more likely that the larger cells will contain 

greatly differing values and so increasing the (co)variance lost. 

 Figure 5.2 illustrates the aggregation effect on the correlation for pairs of variables with 

the same MC, while Table 5.2 presents numerical values from selected original correlations, 

whose values are the means of the 1000 runs of the aggregation model and are represented in the 

figure by the heavy dots.  In general, the means of the distributions remain close to the original 

values of the correlation coefficients and do not change significantly with the level of aggregation, 
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while the range of values increases markedly as the MC decreases.  As the number of aggregate 

cells decreases, the mean correlation tends to decrease in magnitude when the variable MCs are 

positive, but tends to increase slightly as the MCs decrease.  Since a change in correlation is the 

result of a combination of decreases in magnitude of three factors, the standard deviations of X 

and Y in the denominator and their covariance in the numerator, a net decrease is caused by the 

covariance decreasing more than the standard deviations, while a net increase is caused by the 

standard deviations decreasing more than the covariance.  When X and Y are strongly positively 

autocorrelated, neither their individual variances nor the covariance between them are much af-

fected by aggregation, hence the correlation coefficients tend to not be greatly affected by aggre-

gation either.  As the MCs of the variables decrease, X and Y become more likely to vary differ-

ently from each other under aggregation because of the increasing tendency for dissimilar values 

to be located next to each other, resulting in a greater variation of aggregated results. 

 Figure 5.3 shows the behaviour of the upper triangle of the matrix of regression slope pa-

rameters for the MCs of -0.4 and 0.8.  It can be seen that these slope parameters, along with those 

in the lower triangle (not shown), behave very similarly to the correlations, which is reasonable 

since the two statistics have similar forms and since the denominator terms sxsy for correlation and 

sx
2  for the regression slope both represent the products of two variables with the same MC. 

 Figure 5.4 shows the behaviour of the upper triangle of the matrix of Moran Coefficients 

of the regression residuals (MCRR) when the MCs of the variables are -0.4 and 0.8; those from the 

lower triangle behave similarly and are not shown.  Since the linear regression procedure ignores 

the spatial locations of the variables, it is expected that the regression residuals should have a 

similar level of spatial autocorrelation as the original variables when they both have the same MC.  

As Chapter 4 shows, variables with the same MC will not necessarily have the same spatial ar-

rangement and hence their statistics will behave differently under aggregation, with the MC itself 

being the most unpredictable.  All of the plots show a tendency for the residuals to become more 

randomly autocorrelated as the number of aggregated zones decreases, with this becoming more 

defined as the MCs of the variables increase.  This finding reflects the behaviour of the aggregated 

MCs as discussed in Chapter 4.  It can also be seen that the behaviour of the MCRR is almost in-

dependent of the initial correlation of the two variables for these two MCs, although there is a 
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slight downward trend with increasing correlation visible when the variables have intermediate 

values of the MC (not shown). 

5.5. Results for fixed correlation, varying Moran Coefficients 

 When the MCs of X and Y are allowed to vary independently, the number of potential 

combinations of MC and correlation increases dramatically.  Some of them can be ruled out as 

impossible to create, if not theoretically then at least with the dataset generator, these being sets 

with variables that have high correlations and greatly differing MCs.  This is not unreasonable, 

since highly correlated variables need to have similar spatial arrangements and this is simply not 

possible with variables that  have very different spatial autocorrelations.  Setting all of the correla-

tions to the same value and varying the MC can be done for any value of the correlation that  ex-

ceeds -0.2; for correlations less than -0.2 only the top row (and leftmost column from symmetry) 

of the matrix were set to the desired value and the remainder were adjusted until the covariance 

matrix became positive definite.  Several different datasets are required for the larger correlations 

(especially large negative ones) in order to examine as many combinations as possible, which has 

the unfortunate effect of introducing pairs of variables with the same MCs and different spatial 

arrangements, whose aggregated statistics behave differently from each other and make it harder 

to derive general conclusions. 

 Interpretation of the results becomes more complex with this experiment as well.  All of 

the remaining diagrams are similar to Figures 5.1 to 5.4, except that the initial correlation of the 

two variables is held constant while their respective MCs vary.  Hence, the groups of lines are la-

beled (MCx, MCy), representing the Moran Coefficients of the independent and dependent vari-

ables.  Figure 5.5 shows the behaviour of the covariance, correlation, upper triangle of the matrix 

of regression slope parameters, and the upper triangle of the MCRR for an initial correlation of 0.0, 

for which only one data file was required to be generated.  The first three statistics have initial 

values of zero and are equally likely to be positive or negative on aggregation, as the symmetry of 

the diagrams confirms.  The most interesting feature of Figure 5.5a is the transition from the co-

variance increasing with decreasing number of aggregate cells for two highly autocorrelated vari-

ables (left hand group of lines) to it decreasing with decreasing number of cells for two negatively 
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autocorrelated variables.  This can also be seen in Figures 5.1a and 5.1b for all the initial correla-

tions, and is explained in the previous section. 

 Figure 5.5b shows that the range of aggregate correlations increases with decreasing num-

ber of cells for all combinations of variable MCs.  As the MC of either variable decreases, the 

range of correlations for all levels of aggregation increases.  Since the variability of the covariance 

does not appear to be much affected by the spatial autocorrelations of the two variables, as Figure 

5.5a shows, this behaviour is due to the increasing variability of the variance (and hence standard 

deviation) of a variable as its MC decreases.  The variability of the regression slope parameters 

increases as the difference between the MCs of the two variables increases, as shown in Figure 

5.5c, and as with correlations it can be attributed to the variability of the variance of the inde-

pendent variable increasing with decreasing MC.  Finally, since the original slope parameter is 

zero for the uncorrelated data, the regression residual will be just the deviation of the dependent 

variable from its mean and hence the MCRR is the MC of the dependent variable.  Figure 5.5d 

shows that indeed the variation does not depend on the independent variable’s MC. 

 As the original level of correlation between the two variables increases, similar patterns 

appear in the aggregated data as in the zero correlation example, albeit usually with less symme-

try.  As one would expect, the patterns for initially negative correlations are similar to those of 

their corresponding positive correlations, but reflected in the x-axis.  Figure 5.6a, the change in 

covariance for an initial correlation of 0.4, illustrates the tendency for covariance to decrease in 

absolute value as the number of aggregate cells decreases, and as the MC of either variable de-

creases.  As with the zero correlation case, the size of the range does not usually change signifi-

cantly with the number of cells, except for cases of two highly autocorrelated variables, when the 

range increases with decreasing number of cells, and two negatively autocorrelated variables when 

the range decreases with decreasing number of cells. 

 The behaviour of the regression slope parameter b1, is more regular than that of the other 

two statistics.  Figure 5.6b shows the upper triangle of the matrix of b1 for an initial correlation of 

0.4 and was created by merging the results from two different files.  The pattern with the zero ini-

tial correlation is repeated here, with the range showing a tendency to increase for all levels of 

aggregation as the independent variable decreases in MC, but with only a slight dependence on 
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the dependent variable’s MC, which is reasonable given that the only influence the dependent 

variable can exert on the regression slope is through the covariance. 

 Because the initial MCRR is very different for each variable, the difference between it and 

the aggregated MCRR is examined.  It can be seen that, at least for the case of an original correla-

tion of 0.4 shown in Figure 5.6c, the behaviour seems more related to the MC of the independent 

variable than that of the dependent variable, as was the case for the initial correlation of 0.0.  A 

general trend toward decreasing MCRR for highly autocorrelated variables and increasing MCRR 

for negatively autocorrelated variables indicates a tendency toward more random autocorrelation 

of residuals being produced by aggregation, indicating again that aggregation may actually im-

prove the statistical reliability of regression results. Unfortunately, the need to create and merge 

several files for the initial correlation of 0.8 case and the resulting influence of the initial spatial 

distributions make drawing conclusions for higher correlations difficult (not shown). 

 As the initial level of correlation increases, the behaviour of the aggregated correlation 

becomes more unpredictable.  When the initial correlation is moderate, such as in Figure 5.7a 

where it is 0.4, there is a strong tendency for correlations to increase with aggregation for all but 

the least spatially autocorrelated pairs of variables.  This agrees with the general conclusions of 

papers published prior to Clark and Avery (1976) that state that correlations tend to increase with 

aggregation (Clark and Avery, 1976), a conclusion somewhat discounted by Openshaw and Tay-

lor’s (1979) results which show the peaks of the various distributions at or near the original corre-

lation value.  Clark and Avery’s (1976) results show a correlation coefficient that increases stead-

ily with level of aggregation from its initial value near 0.4, except for the last level where it de-

creases slightly, a behaviour that they considered an anomaly.  Robinson (1950) described a corre-

lation coefficient that increased from 0.203 at the individual level to 0.773 at state level and 0.946 

at the (U.S. Census) division level, and Gehlke and Biehl (1935) presented two, the first which 

increased in absolute value monotonically from -0.502 to -0.763 and the second which started 

from -0.563, decreased in absolute value and then increased to end at -0.621.  No information on 

the spatial autocorrelations of the variables was available for either of these three papers, but it is 

reasonable to assume that they were moderately positive. 

 Figure 5.7b shows the change in correlation for an initial correlation of 0.8 and graphically 

illustrates that the tendency for correlations to increase with aggregation does not always hold, at 
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least not for highly correlated variables.  Each group of lines in a dashed box represents the be-

haviour of the aggregated correlation between two variables with the same combination of MCs 

as the other group.  It can be seen that pairs of variables with the same MCs can behave quite dif-

ferently under aggregation, an effect that is likely caused by differences in the spatial arrangements 

of the dependent and independent variables.  This behaviour is a good subject for future research. 

5.6. Discussion 

 In order to facilitate comparison with Openshaw and Taylor’s (1979) study of the aggre-

gation effect on correlations, a dataset with 8 variables, whose MCs alternate between 0.37 and 

0.43, and which are all mutually correlated at 0.3466, is created using the correlation matrix of the 

99 counties of the state of  Iowa.  Unlike the MCs and correlation, the means and variances were 

not stated in the paper, so they were all arbitrarily set to 20.0 and 6.0 respectively, the same as in 

the other experiments.  The aggregation model is only run 1000 times on this dataset, as com-

pared to the 10,000 runs of Openshaw and Taylor (1979), but prior experience has shown that 

there is little to gain in going beyond 1000 runs.  As the model automatically generates eight lev-

els of aggregation, from 45% to 10% of the original number of cells, the counties were aggre-

gated to 45, 40, 35, …, and 10 regions.  Figure 5.8a shows the variation in correlation between 

the pairs of variables whose MCs were 0.37 and 0.43.  Table 5.3 presents summary information 

for the thirteenth group of lines of Figure 5.8a, which was selected because it has among the 

greatest extremes in the 10 aggregate cells values. 

 The patterns of the figure and the table show behaviour similar to that in Openshaw and 

Taylor’s (1979) Figure 5.1, with normally or near-normally distributed variables whose frequency 

distributions become wider and flatter as the number of aggregate cells decreases.  Figure 5.8b 

provides a comparison to a synthetic dataset in which all variables have MCs of 0.4 and varying 

degrees of correlation, as in Figures 5.1 to 5.4, but generated on the Iowa connectivity matrix, 

and it can be seen that the third group of lines from the right, representing the original correlation 

of 0.4, is similar to the groups in Figure 5.8a.  The wider ranges in Figure 5.8b, as compared to a 

similar diagram for the 400-zone connectivity matrix (not shown, but see Figure 5.2), is due to the 

smaller number of zones in the Iowa dataset because the smaller numbers of zones means that dis-

similar values will be closer together and hence more likely to be included within aggregate cells.  
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This, plus the behaviour of the means of the distributions, which both increase, decrease, and re-

main approximately the same, emphasizes the above conclusion that the behaviour of the correla-

tion under aggregation is very difficult to predict and will depend on the spatial configurations and 

number of observations of the two variables. 

5.7. Conclusions 

 The synthetic spatial dataset generator of Reynolds and Amrhein (1998) is used to search 

for a relationship between the effects of aggregation on the covariance and correlation and the 

spatial autocorrelations of the two variables whose interaction is measured.  Two experiments are 

performed, the first in which the Moran Coefficients of the variables are equal and the correlations 

varied, and the second in which the correlations of variables are held constant and their MCs are 

varied.  In both experiments, it is observed that the magnitude of the ranges of the covariances 

decreases with the decreasing number of aggregate cells for low values of variables’ MC, but this 

gradually changes as the MCs increase until the ranges increase with decreasing numbers of ag-

gregate cells.  Even though the covariance can either increase or decrease with aggregation, 

unlike the variance which always decreases, in the vast majority of cases it decreases in magni-

tude, showing that variability is lost both within each variable and between them.  One common 

factor of all the statistics and levels of aggregation is that all of the frequency distributions are ei-

ther normal or nearly normal, even for the very complex MC of regression residuals (MCRR). 

 When both of the variables have the same Moran Coefficient, the behaviour of the covari-

ance, correlation, and regression slope parameter β1 is quite regular, with the ranges of the statis-

tics tending to increase as the MCs decrease, increase as the number of aggregate cells decreases, 

and decrease as the original correlation increases in magnitude.  The MCRR shows little variation 

with initial correlation, but its behaviour changes as the MCs of the two variables increase, show-

ing a marked tendency to decrease as the number of aggregate cells decreases.  Since spatial auto-

correlation of residuals is a violation of the desirable property of independent residuals, the de-

crease in MC indicates that the quality of results of linear regression will actually be improved by 

aggregation, although the loss of information through aggregation makes this improvement ques-

tionable. 
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 When the variables’ MCs differ and the initial correlation is zero, the behaviour of the 

bivariate statistics is still reasonably regular.  The covariance has its properties discussed above, 

while the range of correlations shows a definite trend toward increasing as the MCs of the vari-

ables decrease.  As expected, the greatest variability in the b1 values occurs for the variables with 

the greatest differences in MCs, while again the ranges generally increase as the MCs of the vari-

ables decrease.  The behaviour of the MCRR depends on the MC of the dependent variable only, 

since an initially zero b1 means the initial MCRR is that of the deviation of y about its mean.  When 

the variables’ MCs differ but the initial correlation is non-zero, reliable prediction of the statistics 

becomes much more difficult, especially for MCRR and correlation, as differences in results due to 

different spatial configurations of the variables can be dramatic.  The unfortunate conclusion that 

must be drawn is that prediction of the unaggregated values of bivariate statistics will be, if possi-

ble at all, a very difficult process.  Clark and Avery (1976) hypothesize that deviations in the be-

haviour of the coefficients are related directly to how the covariation is affected by aggregation 

and indirectly by the spatial autocorrelations of the variables, but do not agree with a hypothesis 

by Blalock (1964) that the deviations are caused by reduction in variation of the dependent or in-

dependent variable.  My results indicate that both are partially correct – the behaviour is related to 

all of these causes, which is why they, using only a few real datasets without the benefit of being 

able to vary parameters at will, had difficulty drawing their conclusions. 

 In order to compare the results of the experiments to those of Openshaw and Taylor 

(1979), a synthetic dataset was generated on the connectivity matrix of the 99 counties of Iowa 

whose variables have MCs of 0.37 and 0.43 and correlations of 0.3466 to match the properties of 

the variables in that paper.  The results appear to be in agreement, with the distributions becoming 

wider and flatter with aggregation, and the ranges becoming quite large as the number of zones 

becomes small.  The ranges are larger with the smaller number of initial regions as compared to 

the 400 zones of the test datasets because dissimilar values are closer together, even for high 

MCs, increasing the chance of having aggregate cells with larger internal variations.  The fact that 

some distribution means increase, while others decrease or stay roughly the same, highlights the 

dependence of the correlation on the spatial distribution of the variables, even though the correla-

tion has no spatial component. 
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 Statistical simulation is proving to be a useful tool in the continuing attempts to under-

stand the workings of the MAUP, especially with the more complex bivariate and multivariate sta-

tistics.  Unfortunately, it seems that a higher level of sophistication than the Moran Coefficient is 

required to numerically describe the spatial pattern if attempts to predict and hence exploit the 

behaviour of statistics under aggregation are to have any hope of success. 
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5.9. Tables 

Table 5.1:  Variation of the covariance with original MC of the variables and correlations 

 Original MC = -0.4 Original MC = 0.8 
Cells r = -0.6 r = 0.4 r = 0.8 r = -0.6 r = 0.4 r = 0.8 

400 -3.6000 2.4000 4.8000 -3.6000 2.4000 4.8000 
180 -1.0733 0.6401 1.3696 -3.0226 2.0130 4.0241 
160 -0.8969 0.5340 1.1428 -2.9355 1.9506 3.9038 
140 -0.7287 0.4296 0.9260 -2.8314 1.8747 3.7574 
120 -0.5844 0.3404 0.7388 -2.6993 1.7812 3.5717 
100 -0.4299 0.2601 0.5497 -2.5401 1.6691 3.3467 
80 -0.3204 0.1869 0.4054 -2.3294 1.5157 3.0468 
60 -0.2095 0.1217 0.2640 -2.0166 1.3023 2.6201 
40 -0.1151 0.0688 0.1457 -1.5468 0.9773 1.9725 

 

Table 5.2: Variation of the correlation with original MC of the variables and correlations 

Cells Original MC = -0.4 Original MC = 0.8 
400 r = -0.6 r = 0.4 r = 0.8 r = -0.6 r = 0.4 r = 0.8 

180 -0.6202 0.3899 0.8008 -0.6041 0.4008 0.8011 
160 -0.6238 0.3911 0.8020 -0.6035 0.4002 0.8000 
140 -0.6240 0.3874 0.8040 -0.6030 0.3994 0.7984 
120 -0.6289 0.3881 0.8041 -0.6013 0.3983 0.7956 
100 -0.6220 0.3927 0.8032 -0.5995 0.3979 0.7922 
80 -0.6301 0.3895 0.8071 -0.5967 0.3957 0.7861 
60 -0.6288 0.3898 0.8044 -0.5869 0.3905 0.7742 
40 -0.6242 0.3928 0.8014 -0.5710 0.3815 0.7518 

 

Table 5.3:  Summary information for the thirteenth group of distributions in Figure 5.8a 

 

Cells Mean Std Dev Min Max Range 
99 0.3466     
45 0.3193 0.0500 0.1497 0.4938 0.3440 
40 0.3112 0.0557 0.0761 0.4500 0.3739 
35 0.3048 0.0643 0.0898 0.5023 0.4125 
30 0.2928 0.0767 0.0048 0.5254 0.5206 
25 0.2813 0.0951 -0.1720 0.5309 0.7029 
20 0.2692 0.1166 -0.2637 0.6245 0.8882 
15 0.2483 0.1672 -0.5425 0.7013 1.2438 
10 0.2212 0.2565 -0.7585 0.9003 1.6588 

 


