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6. The Effects of Aggregation on Multivariate Regression Parameters1 

6.1. Summary 

 Several empirical studies of the Modifiable Area Unit Problem (MAUP) have been per-

formed on census data, one of which has been about its effects on multivariate regression analysis.  

Recognizing that as much control as possible needs to be exerted in order to effectively study the 

MAUP, a spatial dataset generator was created that allows the user to construct sets of variables 

with various spatial and aspatial properties.  The effect of aggregation on multivariate regression 

parameters, with special attention to the influence of spatial autocorrelation, is studied using a 

number of synthetic datasets created by the data generator.  It is found that the effects depend on 

the combinations of autocorrelations of the unaggregated dependent and independent variables.  It 

is also found that aggregation introduces collinearities between independent variables where none 

existed before.  The patterns displayed provide hope that the effects of the MAUP on multivariate 

regression may not be as unpredictable as was once feared. 

6.2. Introduction 

 The Modifiable Area Unit Problem (MAUP), a term introduced in Openshaw and Taylor’s 

(1979) classic chapter, has long been recognized as a potentially troublesome feature of spatially 

aggregated data, such as census data.  Aggregation of high-resolution (i.e. a large number of small 

spatial units) data to lower resolution (i.e. a smaller number of larger spatial units) areas is an al-

most unavoidable feature of large spatial datasets due to the requirements of privacy and/or data 

manageability.  When the original data are aggregated, the values for the various univariate, 

bivariate, and multivariate parameters will more than likely change because of a loss of informa-

tion.  This phenomenon is called the scale effect.  The N spatial units to which the higher-

resolution data are aggregated, such as census enumeration areas or tracts, postal code districts, 

or political divisions of various levels, are arbitrarily created by some decision-making process and 

represent only one of an almost infinite number of ways to partition a region into N cells.  Each 

partitioning will result in different values for the aggregated statistics; this variation in values is 

known as the zoning effect.  The two effects are not independent, because the lower-resolution 

                                                
1 This chapter is based on Reynolds and Amrhein, 1998b, and was actually written before the other papers. 
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spatial structure may be built from contiguous higher-resolution units, such as census tracts from 

enumeration areas, and the resulting aggregate statistics will be different for each choice of aggre-

gation. 

 Several studies (for example, Amrhein and Reynolds, 1996, 1997; Fotheringham and 

Wong, 1991; Amrhein and Flowerdew, 1993; Openshaw and Taylor, 1979) have been published 

that study the effects of the MAUP on a number of census datasets.  Of these, only Fotheringham 

and Wong (1991) have examined the effects of the MAUP on multiple regression parameters, 

pessimistically concluding that its effects on multivariate analysis are essentially unpredictable.  

Amrhein (1993) presents the results of a statistical simulation of the MAUP by aggregating ran-

domly-generated point data into square grids of various sizes, thus avoiding many of the problems 

associated with the use of census data.  This chapter expands upon the ideas from both, using sta-

tistical simulations to study the effects of the MAUP on multivariate analysis.  The fact that Steel 

and Holt’s (1996) analytically derived rules for random aggregation agree with Amrhein’s (1993) 

empirical rules corroborates that simulations are an effective tool for examining the effects of the 

MAUP. 

6.3. The synthetic spatial dataset generator 

 The use of census data imposes a serious constraint upon those who seek to understand 

the mechanics of the MAUP simply because there is no control over the nature of a region’s over-

all shape; the shapes, sizes and connectivities of its subregions; or the ranges, means, variances 

and covariances, frequency distributions, and spatial autocorrelations of the variables.  The effects 

of aggregation on a given census variable can be determined readily enough, but few clues to un-

derlying processes can be gleaned because the data cannot be systematically varied to test for the 

effects of changes.  Other weaknesses of census data, such as random rounding and values miss-

ing due to the absence or suppression of data, only serve to make the drawing of any conclusions 

even more difficult.  In order to study the MAUP, it is therefore advantageous to be able to con-

struct synthetic spatial datasets over which a researcher can control and systematically vary all of 

the above features.  This chapter employs the dataset generator described in detail in Chapter 3.  
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Figure 6.1 illustrates the region used for the experiments, which is divided into 400 subregions, 

along with three sample aggregations. 

6.4. The experiments 

 Spatial autocorrelation is known to play a key role in the MAUP, as is illustrated in the 

following experiment.  Consider a spatial dataset that contains negative spatial autocorrelation; 

that is, numbers that are dissimilar are located in adjoining regions.  In the aggregation process, 

contiguous regions are joined and the individual variable values are (in this case) replaced by their 

average, hence creating a new dataset with a reduced variance.  With some algebra, it is easy to 

show that the difference between the original variance and the aggregate variance (weighted by 

the number of units in each cell) is the sum (again weighted by the number of units) of the vari-

ance of the regions within each cell.  For the negatively autocorrelated dataset, it is expected that 

the values in each cell will have a high variance, and hence the change in variance will be relatively 

large.  As the spatial autocorrelation becomes more positive, the expected internal variance within 

each cell should decrease, since similar values will tend to become more likely to be adjacent, and 

hence the change in variance should become less.  The influence of spatial autocorrelation on the 

behaviour of bivariate and multivariate statistics is more difficult to assess, however, as Chapter 5 

demonstrates for the bivariate case, since each variable’s MC and spatial pattern will cause it to 

respond to aggregation differently. 

 The experiments in this chapter explore the effects of aggregation on the various parame-

ters of the linear regression model y = β0 + β1x1 + β2x2 + β3x3.  Three independent parameters are 

considered to be sufficient to capture enough of the complexities involved in multivariate linear 

regression without creating excessive computational and analytical overhead.  Fotheringham and 

Wong (1991) use a four-variable regression model, in which the variables are all proportions; their 

results are compared to ours here. 

 Three different experiments are performed.  In the first, y, x1, x2, and x3 are all assigned 

the same level of spatial autocorrelation (as measured by the MC).  Eight datasets are created in 

which all four variables have MCs of -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 respectively, and 

have zero correlation between them.  In the second experiment, x1, x2, and x3 are assigned the 

same MC, while y is given a different one and again all variables are uncorrelated.  Datasets are 
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created with MCs for dependent and independent variables chosen from -0.4, 0.0, 0.4, and 0.8, 

for a total of twelve combinations.  The third experiment counts the number of statistically signifi-

cant changes in correlations between variables for the datasets of the first experiment in order to 

estimate the potential for introduced collinearities.  Obviously, having variables with no collinear-

ity is an idealized case, since most variables will have some degree of correlation between them, 

but it is a good place to start. 

 The aggregation algorithm is described in detail in Chapter 3.  For these experiments, as in 

Chapters 4 and 5, the regions are aggregated to M = 180, 160, 140, 120, 100, 80, 60, and 40 

cells, representing from 45% to 10% of the original 400 regions, in order to assess the scale effect 

of the MAUP.  All of these aggregations are performed independently in a run of the model, and 

each run is independent of the previous runs.  To account for the variability of results introduced 

by the zoning effect, 1000 runs of the model are performed.  After each aggregation, the data are 

fitted to the multiple linear regression model and the resulting parameters, plus the Moran Coeffi-

cient of the regression residuals (MCRR), are saved. 

 Once all aggregations are completed, the maximum, minimum, mean and standard devia-

tion of each parameter for each scale of aggregation are computed and saved for analysis.  The 

analysis plots (see Figure 6.2b as an example, and Chapter 3 for a more detailed description) are 

arranged in groups of eight lines, one line for each scale of aggregation, with the labels for each 

line being listed in the plot’s legend.  Each group represents a set of initial conditions for an ex-

periment, and is labeled on the plot with (MCx, MCy), where MCx is the MC of the independent 

variables and MCy that of the dependent variable.  Each line represents the range of values of the 

parameter that are obtained for the scale over all the runs, and is also marked by the mean value (a 

heavy dot) and at the mean ± 1 standard deviation (a small horizontal line) to give a rough idea of 

the distribution of values. 

6.5. Results 

 The results from the first experiment, in which the Moran Coefficients for the dependent 

and independent variables are the same, show that all of the multivariate regression parameters 

vary systematically with a change of scale and also with the level of spatial autocorrelation latent 

in the data.  Figures 6.2 to 6.4 illustrate the variations in R2, the MC of the residuals, and the val-



  74 

ues for β0, β1, and their standard errors; figures for β2, and β3 are similar to those of β1, and are 

not shown.  All of the figures show the same pattern, with the ranges for all scales decreasing with 

increasing spatial autocorrelation.  This conforms to expectations, since we expect the scale effect 

to be less severe with greater positive autocorrelation due to more similar values tending to be 

aggregated.  The figures also show that the variation of all parameter values increases with the 

magnitude of the scale effect over all levels of spatial autocorrelation.  This again agrees with ex-

pectations, since more information is lost as the data values are aggregated into fewer cells, and 

with a larger number of regions going into each cell it is expected that there would be a greater 

degree of variation in results caused by the choice of partition, even for highly spatially autocorre-

lated data. 

 Since all the variables are generated randomly and are mutually uncorrelated, the values of 

R2 for the unaggregated datasets are all close to zero.  Figure 6.2a illustrates that aggregation can 

produce a model that can have, in extreme cases, from 20% to even 70% of the variation ex-

plained by the model, depending on the scale of aggregation and the spatial autocorrelation of the 

data.  The distance of the maximum extreme values from the mean plus one standard deviation 

mark indicate they are all outliers in the frequency distributions, and as such they will tend to in-

crease the mean value.  But even with that in mind it is still apparent that aggregation tends to 

give models with better fits than the original data, with better fits being associated with greater 

aggregation.  This agrees with expectations, since a reduction in the variability of the data values 

will tend to produce a better-fitting model (if covariance is also not reduced), but the loss of in-

formation caused by reducing the sample size offsets any apparent gain. 

 Figure 6.2b illustrates the change of the MCRR with aggregation.  One of the basic as-

sumptions of a linear regression model is that the residuals are independent, and it is clear that this 

assumption is being violated since spatially autocorrelated residuals are not independent2.  Since 

the initial correlations between the variables are all zero, all of the regression slope parameters are 

also initially zero so that the initial MCRR will simply be the MC of the deviation of y about its 

mean, which equals the MC of y.  The diagram illustrates the tendency for the regression residuals 

to become more randomly autocorrelated, with that for the initially negative residuals tending to 

                                                
2 Since each observation can be partly predicted from its neighbours, the information content of observations is re-
duced.  See Section 5.3, Griffith (1988, pp. 82-83), and Cliff and Ord (1981, p. 199) for details. 
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increase, while that for the initially positive ones tending to decrease.  The change in residuals for 

the MC of 1.0 does not follow the pattern of the rest of them, but still does tend to decrease 

slightly.  As with the findings of Chapter 5, it appears that aggregation tends to improve the statis-

tical quality of linear regression, even though it changes all of the parameter values. 

 Figures 6.3 and 6.4 show that the regression coefficients and their standard errors behave 

similarly under aggregation.  The mean values of the β0 and β1 estimates b0 and b1 remain close to 

their unaggregated values over all levels of spatial autocorrelation and all scales.  In contrast, the 

average value of the standard error for all coefficients shows a definite increase with the scale ef-

fect.  This is not unexpected, as Fotheringham and Wong (1991) point out, since the standard er-

ror depends partly on the number of aggregated units.  Interestingly, even though the range of 

variation of the standard error due to the zoning effect decreases with increasing spatial autocor-

relation, the mean value for a given scale remains essentially constant.  The β2 and β3 coefficient 

estimates b2 and b3 and their standard errors behave similarly and are not shown. 

 The results of the second experiment, in which the independent variables x1, x2 and x3 con-

tain the same level of spatial autocorrelation, while y has a different one, are presented in Figures 

6.5 to 6.7.  Each plot consists of 12 groups of lines, with each group representing a combination 

of MCs for the dependent and independent variables.  The groups are organized in four sets of 

three, with each set’s dependent variable having the same Moran Coefficient. 

 As before, the range of variation of the various parameters increases as the scale de-

creases.  Figure 6.5a shows that the range of R2 decreases as the MC of both the independent and 

dependent variables increases, though it appears to decrease faster with the increase in the inde-

pendent variables’ MC than with the dependent variable’s.  This is consistent with the results 

shown in Figure 6.2a and indicates that, as before, less information is lost when the variables are 

highly autocorrelated, resulting in smaller variations of the aggregated statistic values. 

 By examining Figure 6.5b and comparing it to Figure 6.2b, it is apparent that the behav-

iour of the MC of the residuals depends more on the spatial autocorrelation of the dependent vari-

able than that of the independent variables, since the distributions do not change significantly with 

the MC of the independent variables.  As explained above, this is due to the initial values of the 

slope parameters being zero, resulting in the initial MCRR being the MC of the dependent variable.  

As before, the behaviour will depend on the spatial pattern of the variables, not just on their MCs. 
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 As with the first experiment, the regression coefficients and their standard errors each be-

have in roughly the same way for each combination of spatial autocorrelations.  There are three 

clearly visible patterns, aside from the usual increase in variability with decreasing aggregation 

scale.  First, the mean values of the distributions for the regression coefficients tend to remain 

fairly stable as the number of aggregate cells decreases, while the means of the standard errors 

tend to increase.  Second, for a given MC of the independent variable, the variability of the ranges 

increases with increasing MC of the dependent variable, though this effect becomes much less 

dramatic as the MC of the independent variables increases.  The size of some of the ranges is in-

teresting, especially with the intercept parameter b0 which can be almost 80 above or below the 

mean of 20 for the 40-cell case in the third from last group in Figure 6.6a.  Third, for a given MC 

of the dependent variable, the range decreases with increasing MC of the independent variables.  

The patterns are reflected in the those for the standard errors, as shown in Figures 6 and 7 for b0 

and b1 (those for b2 and b3 are similar and not shown).  Since the multivariate linear regression 

model parameter estimates are of the form b=(XTX)-1(XTY), it is expected that variations in the 

spatial autocorrelation of the independent variables X will influence the outcome more than those 

of the dependent variable Y.  These figures should serve as a clear warning to those who would 

blindly use multivariate regression methods on aggregated georeferenced data and then expect the 

results to apply to a higher resolution! 

 Comparison of these results with those of Fotheringham and Wong (1991) is difficult be-

cause the dependent and each of their four independent variables had a different MC, ranging 

from almost 0.9 for their Pblack to about 0.25 for Peld.  Even from the very simple second experi-

ment, it is clear that having the dependent and independent variables with different MCs increases 

the complexity of the response of the regression parameters to aggregation.  Differences in the 

spatial patterns of the variables, as shown above, can also hamper comparisons, as results may be 

very different for variables with the same MCs. 

 Fotheringham and Wong’s (1991) (hereafter referred to as FW for brevity) analysis of the 

change in Moran Coefficients of the variables can be compared with experimental results, how-

ever, using the diagrams of Chapter 4.  Even though the change in the MC depends on the spatial 

arrangement of the variable, Figures 4.2b, 4.4a, and 4.8 show that the distributions widen as the 

number of aggregate cells decreases (also shown in FW’s Figure 6), and that the mean value ei-
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ther decreases or increases monotonically, unlike most of the examples in their Figure 6 which in-

crease and then decrease.  These differences could be the result of FW’s performing only 20 ran-

dom aggregations for each spatial scale (20 being not nearly enough to approximate the true dis-

tribution of aggregate values), having more than twice the number of base units as we used, and 

using proportional variables (i.e. numerator and denominator are aggregated separately and the 

results divided) rather than variables that are simply summed or averaged, or perhaps to unknown 

violations of the regression model assumptions.  Further research needs to be done to study the 

effects of the MAUP on proportion-type variables. 

 Also of interest in a study of multivariate linear regression are conditions that violate the 

assumptions of the model.  The easiest one to study is collinearity, the presence of correlation be-

tween the independent variables3.  For this experiment, the datasets used in the first experiment, 

which all have zero correlation between the variables, are aggregated in the model as before and 

the number of correlations that are statistically significantly different from zero are counted for 

each level of aggregation.  Table 6.1 summarizes the results for the sets that have MCs of -0.4, 

0.2, and 0.8 for the aggregation levels of 180, 100, and 40 cells, while Figure 6.8 illustrates the 

variation of correlation with MC for the datasets whose variables have the MCs of -0.4 and 0.8.  

Note that the values in the row labelled Any will be less than the sum of the values in the columns 

if more than one of the correlations is significant at the same time, which occurs frequently for the 

-0.4 MC case at all levels of aggregation, but less so for the other datasets. 

 Figure 6.8 and Table 6.1 demonstrate that the ranges of the introduced correlations de-

crease as the MCs of the variables increase, while as usual the ranges increase with decreasing 

numbers of cells.  The reduction in the range is caused by the decreasing amount of variability lost 

as the variables become more positively spatially autocorrelated, so as the range decreases fewer 

values in the distribution cross over into the critical range.  As illustrated in Chapter 5, predicting 

how a pre-existing non-zero correlation between two of the variables will be affected by aggrega-

tion is not simple, as the change will depend on the interaction between the spatial distributions of 

                                                
3 Note that the paper which forms this chapter was initially written before my more detailed analysis of bivariate 

statistics in Chapter 5.  Since the counting of significant changes in r was not a topic discussed in Chapter 5, I 
decided to leave this in as is. 
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the variables.  The fact that there can be significant changes in the collinearities reinforces the 

need for caution when using multivariate regression techniques on aggregated data. 

6.6. Conclusions 

 In order to systematically examine the role of spatial autocorrelation in the data on the re-

sponse of multivariate regression parameters to aggregation, a multiple linear regression model of 

the form y = β0 + β1x1 + β2x2 + β3x3 was employed, as three independent variables are sufficient 

to capture much of the complexity of multivariate regression while minimizing the computational 

and analytical overhead.  The first two of the three experiments performed were designed to test 

the effect of various spatial autocorrelation levels in the independent and dependent variables on 

the variation of the regression parameters with aggregation.  The third experiment tests to see 

how much collinearity is introduced between independent variables with increasing aggregation, 

when there was none in the unaggregated data. 

 When all variables have the same spatial autocorrelation, as measured by the Moran Coef-

ficient, the variation of the parameters tends to decrease as the Moran Coefficient increases, as 

expected, indicating that more positively autocorrelated data are less affected by the MAUP.  For 

all values of MC tested, the mean values of the coefficient estimates b0, b1, b2 and b3 are found to 

be essentially constant over all levels of resolution, even as the range of the distributions in-

creases. Change in the variability is reflected in the standard errors for the coefficients, whose 

mean values and ranges tend to increase with decreasing spatial resolution.  The mean value of R2 

shows a very large variability for negatively autocorrelated data that tends to decrease with in-

creasing values of the Moran Coefficient.  The change of the MC of the residuals depends on the 

MC of the dependent variable more than that of the independent variable, since the initial values 

of the β coefficients are zero and hence the initial MCRR is that of the dependent variable. 

 When all of the independent variables have a particular Moran Coefficient, and the de-

pendent variable has a different one, it appears that the MC of the independent variables tends to 

play a larger role in the variation of the regression coefficients, R2, and the MCRR, than does the 

MC of the dependent variable.  For a given MC of the dependent variable, the variability in the 

coefficients and their standard errors tend to decrease with increasing MC of the independent 

variables.  However, for a given MC of the independent variables, the variability tends to increase 
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with increasing MC of the dependent variable.  The range of R2 decreases as the MC of either the 

dependent or independent variables increase.   It appears that the change in MCRR depends on the 

MC of the dependent variable for initially uncorrelated variables. 

 Results from the third experiment reveal that collinearities between independent variables 

can be introduced by aggregation.  The mean values of the ranges of correlations remain at or 

very near 0.0 for all resolutions and MCs of the variables.  As one would expect, the ranges of the 

aggregate correlations are much greater for the variables with low or moderate MC than for those 

that are more highly autocorrelated, resulting in more statistically significant changes of correla-

tions, many of which will occur simultaneously.  Of course few datasets have no correlations be-

tween the variables, but it will be difficult to predict the change in a non-zero correlation until a 

way to incorporate the spatial patterns of the variables into the analysis is found. 

 The results of the experiments in this chapter only scratch the surface of the behaviour of 

multivariate regression parameters when data are aggregated from one level of spatial resolution 

to another.  It is clear that the spatial autocorrelation of each of the variables involved influences 

the behaviour, and that if each variable has a different autocorrelation it will be difficult to predict 

ahead of time what the behaviour of the regression parameters will be.  Exploration of the effect 

of the MAUP on multivariate regression using variously autocorrelated variables and various de-

grees of collinearity is a focus for future research. 

 The variables used in these experiments are all variables that were averaged during the ag-

gregation process.  The behaviour of variables that are proportions, in which numerator and de-

nominator are aggregated individually, and variables that are summed in aggregation, also needs 

to be examined.  Comparison of FW’s results to ours indicates that multivariate models con-

structed with variable other than averaged variables may behave differently under aggregation 

from the model described in this chapter.  Models that involve combinations of different variable 

types may behave even more differently.  All of these require further research. 

 The ultimate goal of the research is, of course, to see if it is possible to empirically esti-

mate error in a spatial dataset that has been introduced by aggregation, and the presence of rec-

ognizable patterns indicates that the prospects are perhaps not as gloomy as FW first believed. 
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Table 6.1: Total number of statistically significant correlations between the variables created by 
the aggregation process.  The number of instances when any of the combinations pro-
duced a significant correlation is recorded in the row labelled Any. 

 

 MC = -0.4 MC = 0.2 MC = 0.8 
Cells 180 100 40 180 100 40 180 100 40 
 y, x1 20 52 64 1 2 12 0 0 3 
 y, x2 13 60 65 0 1 6 0 0 2 
 y, x3 27 42 79 0 2 10 0 0 2 
 x1, x2 20 57 60 0 2 1 0 0 0 
 x1, x3 33 45 61 0 0 10 0 0 4 
 x2, x3 14 54 71 0 0 6 0 0 1 
Any 120 279 337 1 7 33 0 0 12 
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